Radon in Dwellings in Scotland: 2008 Review and Atlas

B M R Green, J C H Miles and D M Rees

ABSTRACT

This report details a project, funded by the Scottish Government, to map radon levels in homes throughout Scotland and brings together all the data held in the UK national radon database on radon levels in Scottish dwellings. It updates previous reports and presents the first complete radon probability map for the whole of Scotland including the inhabited off-shore islands.

Data from radon measurements in over 19,000 Scottish dwellings are presented in tabular format by local authority and by various divisions of the postcode system. The radon probability maps are based on the national grid system and show some geographical detail, such as council boundaries, settlements and major roads.

A number of radon Affected Areas are identified on the maps. These are areas where there is a 1% or greater probability of the radon level in a dwelling exceeding the Action Level. It is recommended that a phased programme should be undertaken in the higher probability areas with the twin objectives of identifying homes with high radon levels and encouraging owners and landlords to reduce such levels.

This study was funded by the Scottish Government

© Health Protection Agency Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division Chilton, Didcot, Oxfordshire OX11 0RQ

Approval: January 2009 Publication: April 2009 £21.00 ISBN 978-0-85951-634-1

CONTENTS

1	Rado	n	1
2	Health effects of exposure to radon and its short-lived decay products		
3	Curre	ent UK control strategy	2
4	Sumi 4.1 4.2	mary of previous radon studies in Scotland Initial surveys prior to 1990 Studies from 1990 to 2000 and the first Affected Areas in 1993	3 3 3
5	The o	current programme, 2000 to 2008	4
6	Resu	llts	5
7	Марр	ping	6
8	Disc	ussion	8
9	Conc	clusions	9
10	Glos	sary	9
11	Refe	rences	10
12	Ackn	owledgments	11
13	Figur	res and maps	12
APPENI measure		Details of the radon mapping programme and procedures Background Selecting the sample Inviting householders to participate Measurement procedure Iteration and statistics	33 33 33 34 34 34
APPENI	B1 Healt B2	Letters and leaflets Text of the letter to Chief Executives and Chief Environmental th Officers of local authorities Text of the letter to the Chief Executives of Health Boards and extors of Public Health	35 35 36
	B3 opera B4	Text of the initial letter to householders requesting their co- ation Text of the reminder letter to householders requesting their co-	37
	opera B5	ation Text of the letter for a result below 100 Bq m ⁻³	38 39
	B6	Text of the letter for a result between 100 and 170 Bg m ⁻³	40
	B7	Text of the letter for a result between 170 and 200 Bq m ⁻³	41
	B8 B9	Text of the letter for a result over 200 Bq m ⁻³ Radon leaflet (printed on A4 and folded to form a 4 page A5	42
	leafle		43
	B10	Instruction leaflet for the radon measurement pack	44
APPENI	OIX C	Data tables of measurements in dwellings	45

1 RADON

Radon is a radioactive gas and isotopes, different forms of the same element, occur in the three naturally-occurring decay chains headed by uranium-238, uranium-235 and thorium-232. These radionuclides are found naturally in trace amounts in most rocks and soils; the most abundant isotope of uranium (over 99%) is uranium-238 which includes radon-222 in its decay chain. The higher abundance of radon-222, coupled with a relatively long half-life of 3.8 days, means it is the most important radon isotope as far as risks to human health are concerned. The other two isotopes, radon-219 and radon-220, have half-lives of 3.9 seconds and 54 seconds and are less able to escape from the ground before undergoing further radioactive decay into solid elements. Attention is therefore focussed on radon-222 which will be referred to as radon in this report.

Radon is measured in becquerels per cubic metre of air (Bq m⁻³). The average concentration in Scottish homes is 16 Bq m⁻³ but much higher levels can occur: the level in one home can be ten times higher or lower than the home next door.

Radon is one of a group of elements, called the noble gases, that also includes helium and neon. These elements do not readily react to form chemical compounds and are simple gases under most conditions. However radon undergoes radioactive decay by alpha-particle emission to form a short-lived isotope of polonium. Several further short-lived decay products are formed in a series of decays by alpha and beta-particle emission before a long-lived isotope, lead-210 – half-life 22 years, is reached. It is the short-lived decay products of radon that are responsible for its serious health effects.

More information about radon can be found on the web sites operated by the Health Protection Agency (HPA), www.hpa.org.uk and www.ukradon.org and in several of the references listed in section 11, in particular ICRP(1993) and NRPB (2000).

2 HEALTH EFFECTS OF EXPOSURE TO RADON AND ITS SHORT-LIVED DECAY PRODUCTS

The UK population is exposed to ionising radiation from natural and man-made sources: the pie chart in figure 1 shows the average exposure from all sources. Radiation of natural origin is responsible for the majority of the exposure and the largest contribution comes from radon. According to the latest review by the Health Protection Agency – Radiation Protection Division (RPD), 84% of the average annual dose to the UK population from all sources comes from the four main components of natural ionising radiation (Watson, 2005). The contributions to the total exposure of the population from the four natural sources of ionising radiation and their contributions are; 9.5% from long-lived natural radionuclides in diet; 12% from cosmic radiation; 13% from terrestrial gamma radiation; 50% from radon and its short-lived decay products.

The detrimental effects of exposure to high radon levels were first observed in sixteenth century silver miners in central Europe as high levels of fatal lung disease and identified as lung cancer in the second half of the nineteenth century. Radon was not identified until the beginning of the twentieth century; the link between radon and lung cancer was made some decades later and the pivotal role of the short-lived decay products in delivering the alpha-radiation dose to the lung not unravelled until the 1950s (ICRP 1993).

In the second half of the twentieth century, many epidemiological studies of groups of miners in different parts of the world demonstrated a statistically significant increase in their risk of lung cancer and, in the larger studies, a positive trend in lung cancer rates was found with increasing radon exposure. The main studies, involving over 60,000 miners and 2,600 cases of lung cancer, were the subject of combined analyses that point to radon as the most probable cause of the extra cases of lung cancer (BEIR VI).

In the final decade of the twentieth century, the first substantial epidemiological case-control studies linking radon levels and lung cancer rates in Swedish and English homes were published. These studies showed that the risks from exposure to elevated levels of radon in the home were consistent with the outcomes of previous studies on miners of both uranium and other minerals, who were occupationally exposed to radon. All these studies have consistently shown an increased risk of lung cancer with radon exposure for both smokers and non-smokers. Further studies and, in particular, two international pooling studies in Europe and North America, have now demonstrated and quantified more precisely than before, the risks from exposure to radon in the home and confirmed that the risk from radon is considerably higher for cigarette smokers than for non-smokers (Darby 2005).

3 CURRENT UK CONTROL STRATEGY

In January 1990, the National Radiological Protection Board (NRPB, now the Radiation Protection Division of the Health Protection Agency, HPA) published the principles providing advice to Government on the limitation of human exposure to radon in homes (NRPB 1990a). A supporting document explored the practical implications and provided numerical limits (NRPB 1990b). These included a recommended Action Level for radon in existing homes in the UK of 200 Bq m⁻³ averaged over a year; that parts of the country with 1% probability or more of present or future homes being above the Action Level, identified from radiological evidence and periodically reviewed, should be regarded as Affected Areas; that appropriate Government authorities should delimit localities where precautions against radon should be installed in future homes.

Guidance on protective measures for new dwellings in the radon Affected Areas in Scotland was published in 1999, (BRE, 1999). Section 3.2 of the Domestic Handbook covers the current requirements for the design and construction of new buildings and conversions to reduce the risk to health from radon (Technical Handbook 2008).

4 SUMMARY OF PREVIOUS RADON STUDIES IN SCOTLAND

4.1 Initial surveys prior to 1990

It was not until the early 1980s that an interest developed in the exposure of the population to radiation of natural origin. By the end of the decade, comprehensive reviews of the exposure of the UK population had been published. These included a National Survey of radon and of gamma ray levels in dwellings (Wrixon et al 1988). Considerable care was taken to select the sample for this survey to ensure it was representative of the population distribution and of the housing stock throughout the UK. This was achieved by selecting every nth address from the Post Office Address file. A total of 2,093 householders throughout the UK completed the measurement programme; of these dwellings, 155 are in Scotland and provide the best estimate of the average radon concentration in Scottish homes. This is 16 Bq m⁻³, lower than the overall average of 20 Bq m⁻³ for the UK as a whole. This reflects the fact that the large majority of the Scottish population live in the central belt which is a low radon area.

Alongside the National Survey, more intensive surveys were carried out in areas where geological information suggested above average indoor radon levels might occur (Wrixon et al 1988). These included several areas in Scotland such as the southwest around Dalbeattie; parts of Argyll centred around Ballachulish; Aberdeen and the Dee Valley; parts of the northeast around Helmsdale. In total, a further 157 dwellings were surveyed in these areas with a considerably increased average radon concentration of 70 Bq m⁻³. However a more detailed analysis of the results showed that the highest levels occurred in the Dee Valley and the northeast.

4.2 Studies from 1990 to 2000 and the first Affected Areas in 1993

The findings of the surveys described above and the publication of the advice on a policy to limit exposure to high radon levels (NRPB, 1990a) resulted in a series of initiatives, funded by the Scottish Office, to increase the information on the distribution of radon concentrations in Scottish homes. A series of reports (Green et al 1991, 1993 & 1996) provide the details. An important part was a programme to map the high risk areas in Aberdeenshire and the northeast part of Highland Region. This led to the declaration of two radon Affected Areas in 1993 (NRPB, 1993). These areas, centred on the Dee valley inland of Aberdeen and on Helmsdale in the northeast, were mapped on the basis of a total over 1,800 results from measurements in homes throughout the two regions.

By the new millennium and following a programme of work on behalf of the Scottish Office, the results of measurements in over 9,200 Scottish homes were available; of these 270 were at or above the radon Action Level.

5 THE CURRENT PROGRAMME, 2000 TO 2008

A proposal to complete a radon probability map for dwellings across the whole of Scotland, including both the western and the northern isles was accepted by the then Scottish Executive (now the Scottish Government) which agreed to fund the extra measurements. The objective was to obtain 5 or more measurements in each 5-km square of the national grid. This would allow the completion of a 5-km grid map giving the probability of the radon concentration in an individual dwelling exceeding the Action Level (Miles 1998). In sparsely populated areas of the country, notably the Highlands and the Southern Uplands, it would not always be possible to reach this target.

An analysis of the existing measurement data and information on the location of the housing stock from the Post Office Address File (PAF®) and the Ordnance Survey Address Point File® indicated that a further 10,000 measurements would be required. This figure took account of the facts that over 25% of the 5-km grid squares in Scotland (1,132 out of 3,805) contained no permanent dwellings and a further 300 or so squares contained fewer than 5 dwellings.

The outline methodology to obtain the extra results is given below. Some statistics and more details are contained in appendix A and the letters and leaflet are in appendix B. Please note that direct dial telephone numbers and e-mail addresses have been deleted to avoid confusion as many have changed following the merger of NRPB with the HPA.

- A population-weighted sample of all the dwellings in each 5-km square is selected by reference to the Post-Office Address File (PAF®) and the Ordnance Survey Address Point File®.
- Local Government organisations are informed of the forthcoming programme by the Scottish Government.
- Local authorities and public health boards are sent details of the programme by HPA.
- Letters offering a free radon measurement and asking for the help of householders are posted in batches.
- The numbers of positive replies and returned undelivered letters are assessed and further mailings organised on an iterative basis until either the target of 5 results for each 5-km square is reached or the number of houses is exhausted – the number of requests to any individual address was limited to three.
- Once the householder agreed, a measurement pack is despatched.
- Up to two reminder letters are sent if the householder failed to return the detectors spontaneously at the end of the three month measurement period.
- The householder is informed by letter of the estimated annual average radon level in his home, its significance explained and advice offered whether action is needed to reduce the level. If this was the case, relevant information is supplied.

By the end of the process, over 10,500 measurement packs had been deployed and results for some 9,900 homes had been obtained. The loss rate of less than ten percent is similar to that in comparable surveys elsewhere in the UK and is due to householders moving house, severe illness or death or loss of detectors for a variety of reasons.

6 RESULTS

By early 2008, valid results were available from measurements in a total of 19,100 Scottish homes, of these 370 are at or above the Action Level. More details of the measurement protocol and the method to calculate the annual average radon level in an individual dwelling is given in appendix A (paragraph A4).

These data come from the different radon survey programmes carried out by NRPB and HPA in the last twenty-five years. These surveys were seldom representative of the housing stock of large areas or regions. Indeed, many were intentionally targeted to areas where higher levels were expected. The initial national survey (Wrixon et al 1988) was the only one designed to obtain a population-weighted sample of homes throughout Scotland. The results of this survey continue to provide the best estimates of the average exposure at both national and local authority level. Obviously as the size of the areas to be analysed decreases, the cumulative results become more representative of the total housing stock of these areas. This limitation on how well the cumulative results presented represent the overall position in an area or region needs to be recognised when consulting the data tables, especially for larger regions. It is the radon probability maps described below that provide the best currently available indication of the radon potential for an area.

A series of data tables, summarised below, are contained in appendix C and provide data by local authority and divisions of the postcode (see below). It should be noted that the estimates of the housing stock are derived from the Ordnance Survey Address Point File®. This file is cross-checked on a regular basis with the Post Office Address File (PAF®) maintained by the Royal Mail® for the delivery of mail. However the estimates of the housing stock may differ from those derived from other sources.

The postcode is a system used by the Royal Mail® to route post to the appropriate delivery walk. The structure of the postcode contains three established geographic units for the aggregation of data. The largest is postcode area, Table C3, based on 16 post towns and usually denoted by the first two letters of the postcode. The exception is a single letter G for Glasgow. Postcode areas are divided into postcode districts. Districts are denoted by the letters and numbers in the first half of the postcode, see table C4. Districts are in turn divided into postcode sectors which are denoted by the addition of the first number of the second half of the full postcode and shown in table 5. Note that two postcode areas, DG (Dumfries) and TD (Galashiels), straddle the Scottish/English border. In these two cases, only dwellings and results in Scotland are included in the tables.

To avoid undue precision, numerical values other than averages (see glossary for definitions) have been rounded to two or three significant figures. The administrative

codes used in the tables are those promulgated by the Office for National Statistics. Finally, to avoid giving misleading averages based on small numbers of results and to preserve confidentiality for individual householders, postcode districts or sectors with fewer than 5 results have been excluded from tables C4 and C5.

Table C1	Overall summary data for Scotland
Table C2	Summary data by local authority. (Not representative, see text)
Table C3	Summary data by postcode area
Table C4	Summary data by postcode district (5 or more results)
Table C5	Summary data by postcode sector (5 or more results)

A further table, number C6, provides estimates of the number of homes in each division of the radon maps and of the number of homes expected to be at or above the Action Level. These data are included as an aid to planning any future radon programmes and are discussed in more detail in the following sections.

MAPPING 7

Indoor radon concentrations are affected by indoor and outdoor temperatures, by winds, ventilation conditions, and other factors. To average out these temporal variations and to allow sensible comparison between results from measurements at different seasons of the year and in different years, correction factors are applied.

Measurements are made with two passive integrating detectors in each dwelling – one in the main living area and one in a regularly used bedroom. The detectors are placed for three months and the results combined to reflect typical occupancy patterns. Since indoor radon levels are usually higher in cold weather, the results reported to householders are normalised for typical seasonal variations in radon levels to allow the estimated annual radon concentration to be reported (Wrixon et al 1988) and compared to the Action Level. It has been shown (Miles 1998) that the seasonal variations correspond to average outdoor temperature variations. To allow for the fact that weather patterns vary from year to year, the annual average radon concentrations in houses used in the mapping reported here were calculated using temperature corrections based on temperature at the time of measurement, rather than seasonal corrections.

The techniques used to estimate the fraction of the housing stock exceeding the radon Action Level in grid squares in Scotland were similar to those used previously (NRPB, 1993). The distribution of radon concentrations in homes is approximately log-normal whether the sample is taken from the whole housing stock or a single grid square. Lognormal modelling of the results of radon measurements in homes allows the proportion above the Action Level to be estimated. The methodology is described in more detail by Miles (1998).

Some of the grid squares had no radon results. Most of these have virtually no population, so it is not meaningful to refer to the fraction of the existing housing stock above the Action Level. It is useful, however, to estimate the percentage of the housing stock that would be above the Action Level in these squares to allow preventive measures against radon to be taken should new houses be constructed. For this reason, blank squares adjacent to squares with measurements were in-filled using procedures described by Miles (1998).

The results are shown in the following series of figures and maps. Figure 2 gives an overview of the whole of Scotland and shows the estimated proportion of homes per 5-km grid square with radon concentrations exceeding the Action Level of 200 Bq m⁻³: the proportions range from below 1% to above 30%: the hatched squares are unmapped for the reasons outlined above. Figure 3 is the key to the following map plates and figure 4 shows the number of measurements in each 5-km grid square of the parts of Scotland surveyed: they range from zero to 375.

The 17 map plates, listed below, show the same data as figure 1 at a larger scale together with geographical detail such as settlements, major roads and administrative boundaries. Note that the settlements are selected to give an even spread of locational information and are not necessarily selected solely on population grounds. Each plate covers approximately 16,000 km² and the majority are centred on one 100 km grid square of the national grid; the exceptions are to accommodate the variations in the coast line and the off-shore islands.

Map 1	South-western Scotland
Map 2	South-western Scottish Borders
Мар 3	Kintyre and the islands of Islay, Jura and Arran
Map 4	Glasgow and the south-western Lowlands
Мар 5	Edinburgh and the south-eastern Scottish Borders
Мар 6	North-western Argyll and Bute and the south-western Highlands
Мар 7	Central Scotland
Мар 8	Tayside, Angus and southern Aberdeenshire
Мар 9	Southern Hebrides and western Skye
Map 10	Skye and the western Highlands
Map 11	Central Highlands
Map 12	Moray and northern Aberdeenshire
Map 13	Northern Hebrides
Map 14	North-western Scotland (Sutherland)
Map 15	North-eastern Scotland (Caithness)

Map 16 Orkney Islands and Fair Isle

Map 17 Shetland Islands

8 DISCUSSION

The data presented both in tabular and map form, give a clearer picture of radon levels in Scottish homes. They confirm that for the majority of the Scottish population, who live in the central belt, radon levels in homes are generally low and are not a cause for concern. In addition to the two areas previously identified, in Aberdeenshire and Highland regions, the maps do identify some further areas where radon concentrations at or above the Action Level are likely to be found in 1% or more of homes. These extra areas include the majority of the Mainland of the Orkney Islands, an area around the centre of the Great Glen in Highland and parts of the Scottish Borders.

The parts of Scotland shown in Figure 2 and the following seventeen map plates, with a probability of 1% or more of homes being above the Action Level, are radon Affected Areas as defined in the NRPB Statement on radon in homes (NRPB, 1990a). The primary purpose of these maps is to draw attention to the areas where radon exposures should be reduced or future exposures minimised: priority of measurement and remediation should be given to those areas with the higher proportions of affected homes.

The final table, number C6, in appendix C is provided as an aid to planning surveys and is based on the outcome of the mapping calculations (see above). Data are provided for each local authority; the third column gives the total housing stock taken from the Post Office Address file. The next six columns divide the total housing stock into the six probability bands shown on the radon maps. The final two columns are the ranges of the number of homes estimated to be at or above the Action Level of 200 Bq m⁻³: the penultimate column relates to radon Affected Areas and the final column to the Local Authority as a whole. The total number of homes at or above the Action Level in Scotland is estimated to be between 1,000 and 4,000.

This tabulation is intended to provide a guide to planning a series of programmes aimed at identifying homes with elevated radon levels. Once identified, the owner-occupiers or landlords as appropriate should be encouraged to carry out remedial works.

Similar programmes are in place in other parts of the UK with differing thresholds. In England, there is an on-going series of initiatives in partnership with local councils at district level and public health authorities to offer all householders in the higher risk areas, defined as 5% probability or greater, a free radon test. When a high level of radon is confirmed the householder is provided with information and advice on remedial methods in a variety of ways including Radon Solution Days held at local venues. Similar programmes operate in Wales (threshold of 10% in the pilot programme) and in Northern Ireland (threshold of 1%).

The data in table C6 shows that there are around 62,000 homes in areas of Scotland with a 1% or greater probability of a radon level being at or above the current Action Level of 200 Bq m⁻³; the number at or above a threshold of 5% is about 6,000. It is estimated that there will be up to 4,000 Scottish homes with radon levels at or above the current Action Level. A phased programme should be undertaken in the highest radon probability areas with the twin objectives of identifying homes with radon concentrations at or above the Action Level and encouraging owner-occupiers or landlords to reduce the radon to an acceptable level.

It should be noted that the Board of the HPA has recommended that UK Building Regulations and Standards should be changed to ensure that all new buildings incorporate basic radon protective measures (HPA 2008).

9 CONCLUSIONS

- i. The parts of Scotland shown in Figure 2, and the following seventeen map plates, with a probability of 1% or more of homes being above the Action Level are radon Affected Areas as defined in the NRPB Statement on radon in homes (NRPB, 1990).
- ii. A phased programme should be undertaken in the highest radon probability areas with the twin objectives of identifying homes with radon concentrations at or above the Action Level and encouraging owner-occupiers and landlords to reduce the radon to an acceptable level.

10 GLOSSARY

Averages. The numerical radon results in this report are presented in two ways: arithmetic average and geometric average. The arithmetic average is the normal value used to describe numerical results: it is the sum of all the results divided by the number of results. The geometric average is the nth root of all *n* results multiplied together.

Becquerel. Symbol Bq. The unit of the amount or activity of a radionuclide. Describes the rate which transformations occur. 1 Bq = 1 transformation per second.

Becquerel per cubic metre of air. Symbol Bq m⁻³. The amount of a radionuclide in each cubic metre of air. Often referred to as the activity concentration.

Half-life. The time taken for half the amount of a radioactive element to undergo a radioactive transformation and form a different element.

Isotopes. Chemically identical forms of an element with different masses. The mass is indicated by the number after the element.

Radon Action Level. The recommended upper limit for the activity concentration of radon in UK homes. Its value, expressed as the annual average radon gas concentration in the home, is 200 Bg m⁻³.

Radon Affected Areas. Parts of the country with a 1% probability or more of present or future homes being above the Action Level.

Radioactivity. The spontaneous disintegration of unstable elements (radionuclides). During the process energy is emitted as either alpha or beta particles or gamma rays

11 REFERENCES

- BEIR VI (1998). Effects of exposure to radon. Washington DC, National Academy Press.
- BRE (1999). Radon: guidance on protective measures for new buildings in Scotland. Building Research Establishment report BR-376 (ISBN 1 86081 334 8).
- Darby SC et al (2005). Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. *BMJ*, Jan 29;330(7485):223.
- Green BMR, Lomas PR and O'Riordan MC (1991). Radon in dwellings in Scotland. Chilton, NRPB-M324
- Green BMR, Lomas PR and O'Riordan MC (1993). Radon in dwellings in Scotland: 1993 review. Chilton, NRPB-M447.
- Green BMR, Lomas PR and Kendall GM (1996). Radon in dwellings in Scotland: 1996 review. Chilton, NRPB-M569.
- HPA (2008). Health Protection Agency Board gives advice on radon measures for new homes. See press release on 21st May 2008, available at www.hpa.org.uk.
- ICRP Publication 65 (1993). Protection against radon-222 at home and at work. Ann ICRP 23, (2).
- Miles JCH (1998). Mapping radon-prone areas by log-normal modelling of house radon data. *Health Phys* **74**, 370-378.
- NRPB (1990a). Statement by the National Radiological Protection Board. Limitation of human exposure to radon in homes. *Doc NRPB* 1, (1), 15–16.
- NRPB (1990b). Human exposure to radon in homes. Recommendations for the practical application of the Board's Statement. *Doc NRPB*, **1**, (1), 17–32.
- NRPB (1993). Radon affected areas: Scotland. Doc NRPB, 4, (6), 1-8.
- NRPB (2000). Health Risks from Radon. Chilton. ISBN 0 85951 449 8.
- Pinel J, Fearn T, Darby SC and Miles JCH (1995). Seasonal correction factors for indoor radon measurements in the United Kingdom. *Radiat Prot Dosim*, **58**, 127-32.
- Technical Handbook, Scottish Building Standards (2008). Domestic Handbook 2008, section 3. Available to download at: http://www.sbsa.gov.uk/tech_handbooks/tbooks2007.htm
- Watson SJ, Jones AL, Oatway WB and Hughes JS . Ionising radiation exposure of the UK population: 2005 review. Chilton, HPA-RPD-001, ISBN 0 85951 558 3
- Wrixon, A D, Green, B M R, Lomas, P R, Miles, J C H, Cliff, K D, Francis, E A, Driscoll, C M H, James, A C, and O'Riordan, M C., 1988. Natural radiation exposure in UK dwellings. Chilton, NRPB-R190 (London, HMSO).

12 ACKNOWLEDGMENTS

We wish to thank C R Muirhead for his advice on statistical aspects of this work and present and past members of the radon team at HPA and previously NRPB for all their efforts.

The data reported in the tables and used to construct the maps were collected during many surveys carried out by HPA and previously by NRPB on behalf of the Scottish Government and its predecessors, local councils, landlords and individual householders.

13 FIGURES AND MAPS

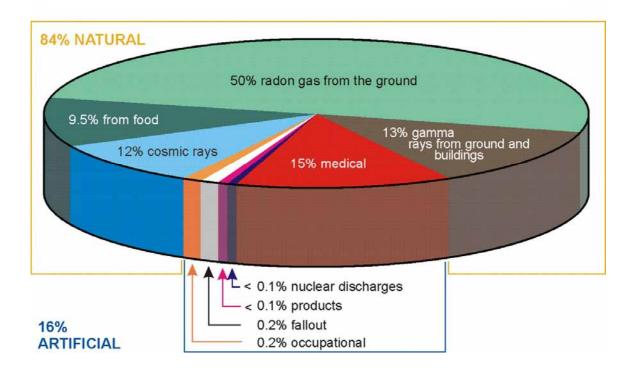


Figure 1 Average radiation exposure to the UK population from all sources

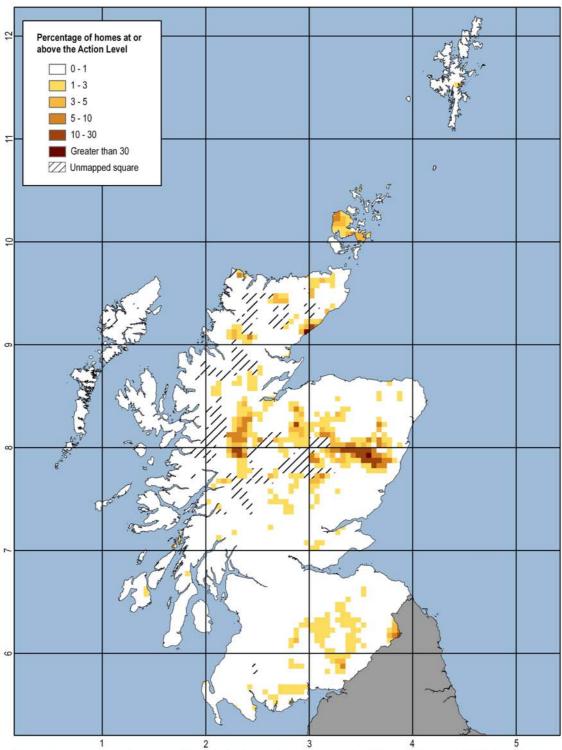


Figure 2 Overall map of radon Affected Areas in Scotland (axis numbers are the 100-km coordinates of the National Grid)
© Crown copyright. All rights reserved [Health Protection Agency][100016969][2008]
Radon Affected Area classification © Health Protection Agency copyright [2008]

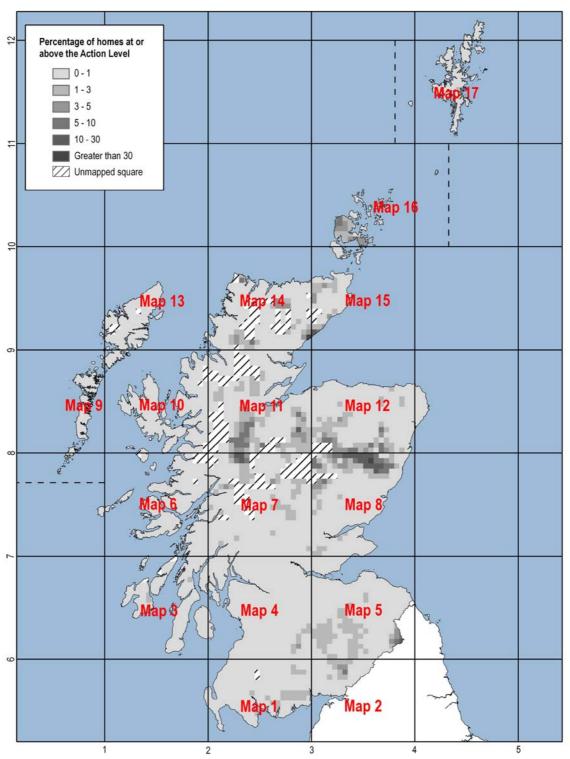
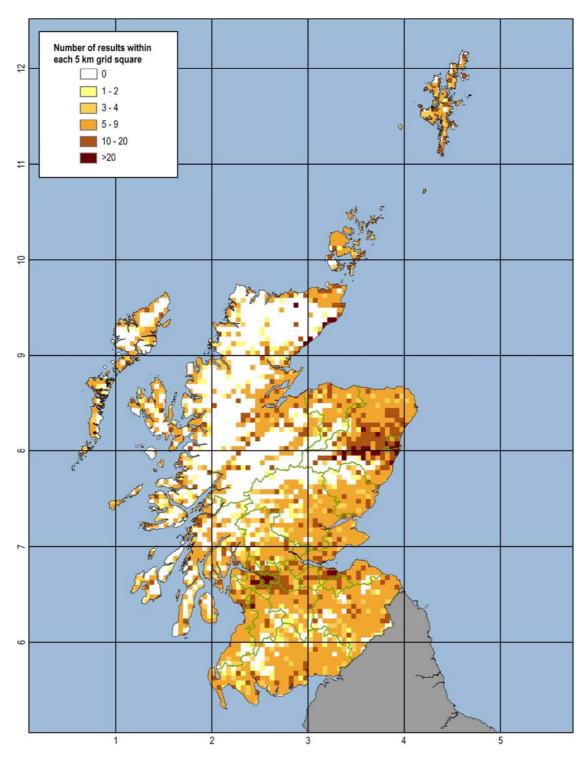
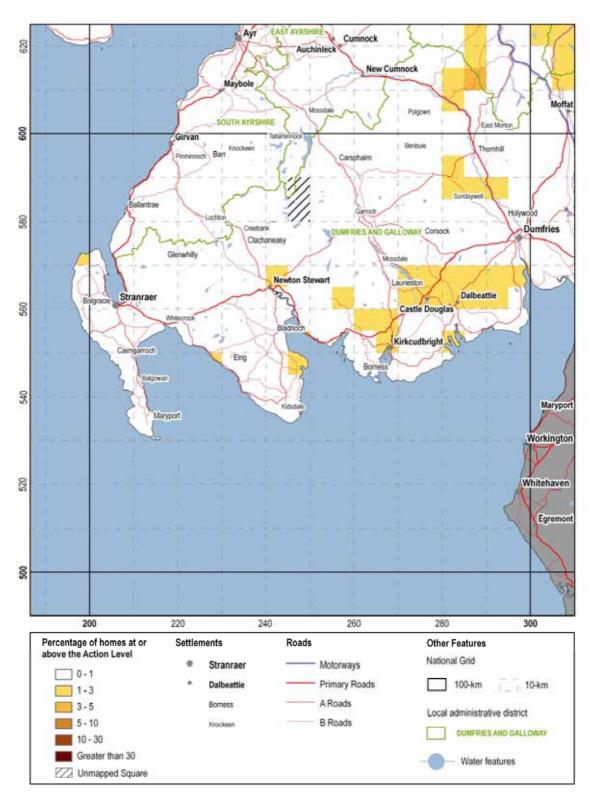
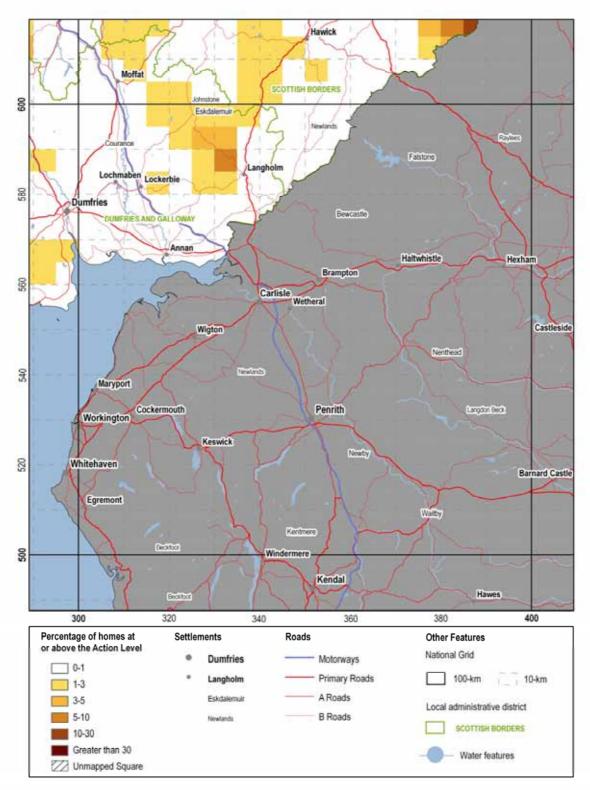
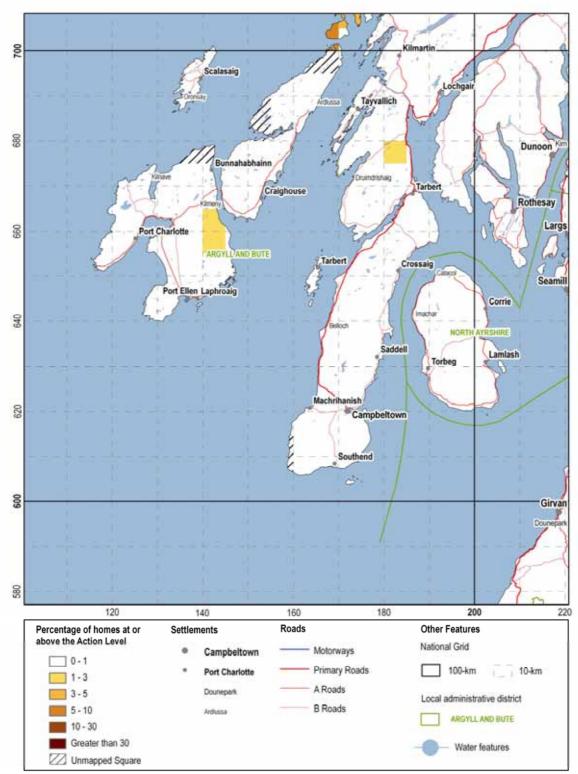
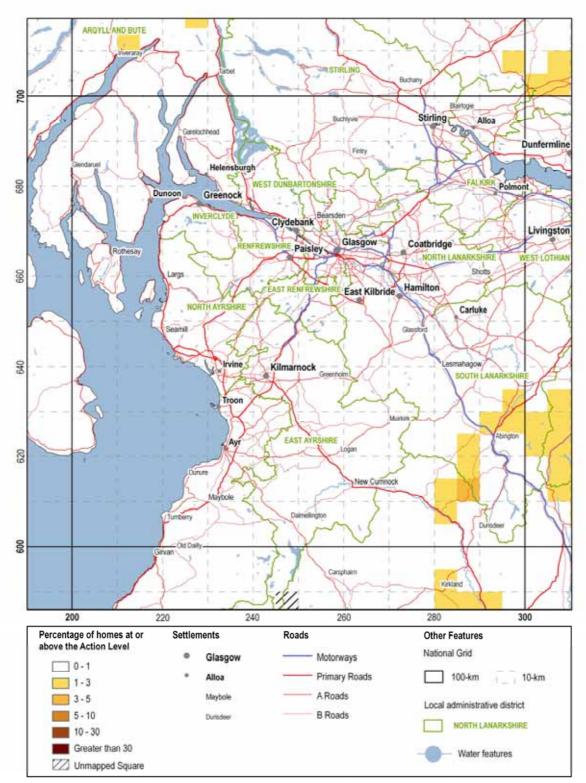
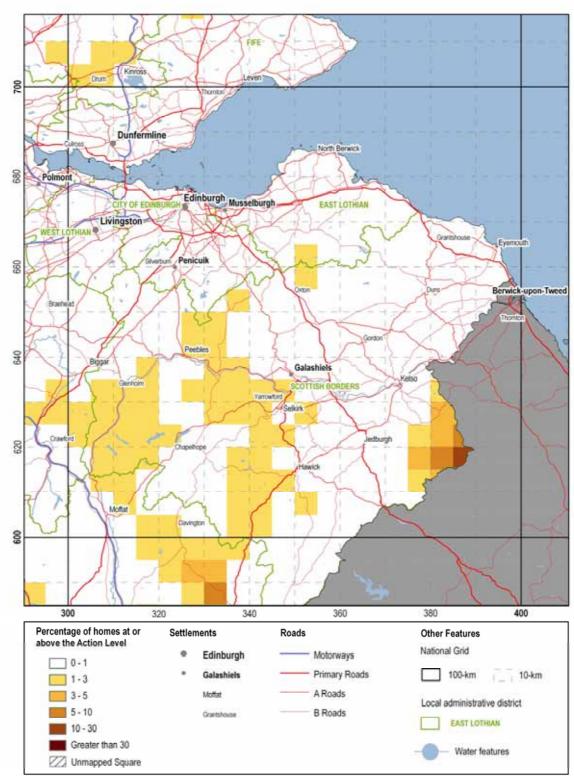


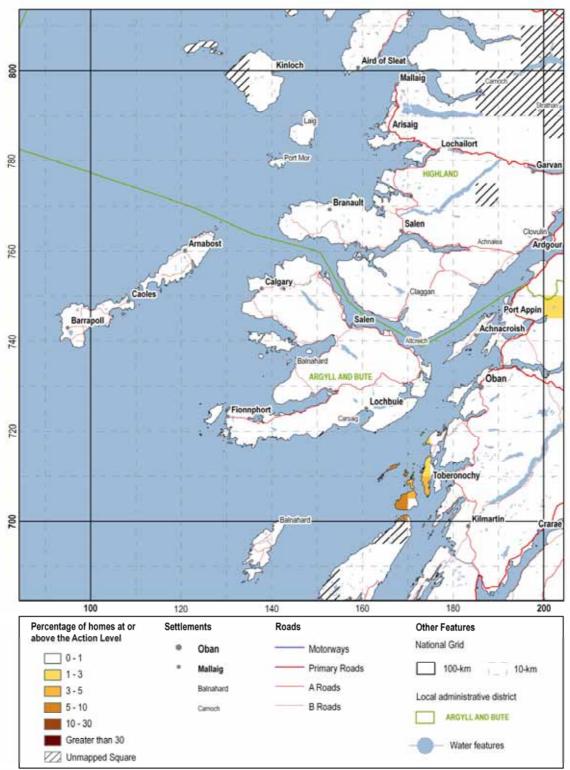
Figure 3 Key to larger scale maps of Affected Areas in Scotland (axis numbers are the 100-km coordinates of the National Grid)
© Crown copyright. All rights reserved [Health Protection Agency][100016969][2008]
Radon Affected Area classification © Health Protection Agency copyright [2008]

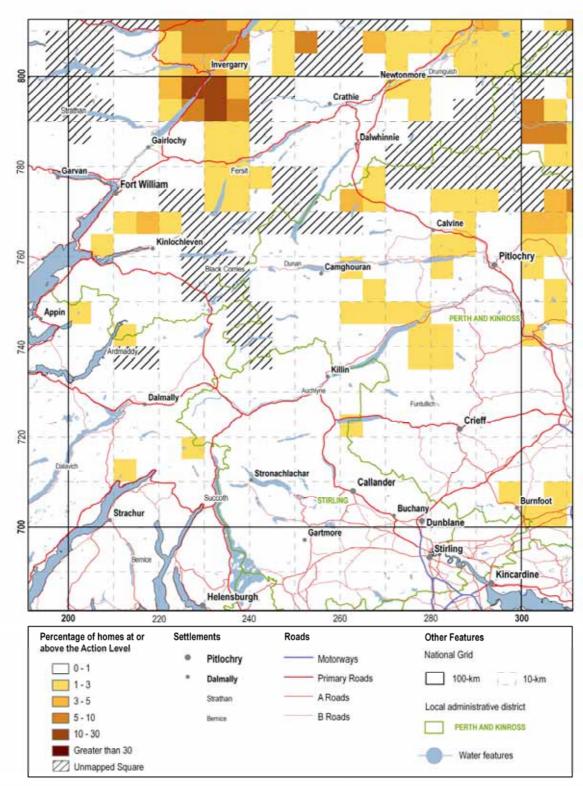




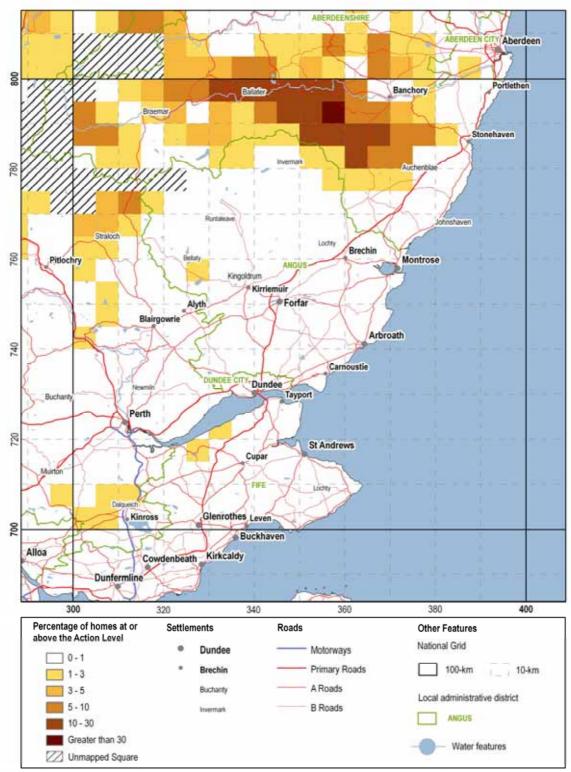

Figure 4 Summary of the number of results by 5 km grid square in Scotland (axis numbers are the 100-km coordinates of the National Grid)

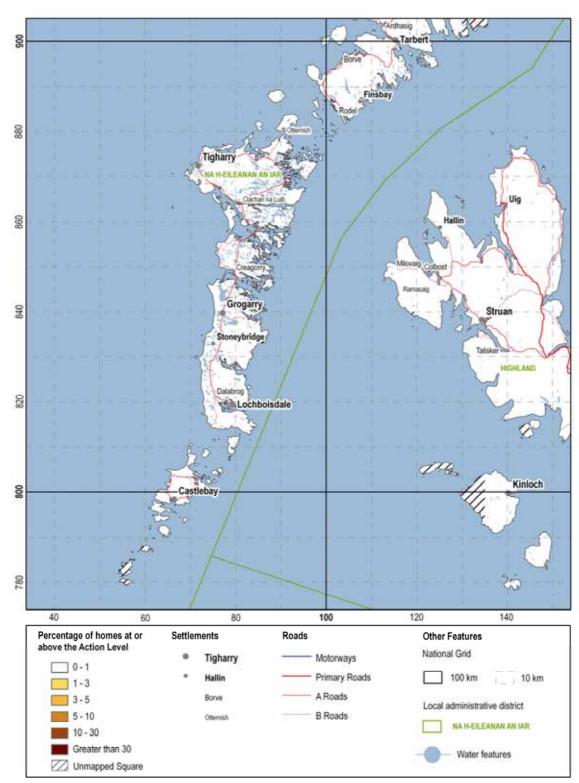

Map 1 South-western Scotland, 100-km grid square NX (axis numbers are the coordinates of the National Grid)

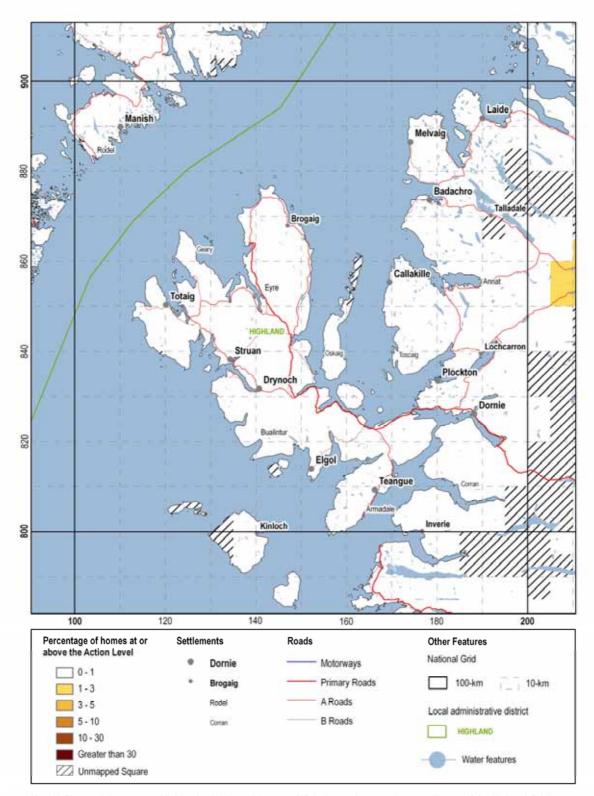

Map 2 South-western Scottish Borders, 100-km grid square NY (axis numbers are the coordinates of the National Grid)

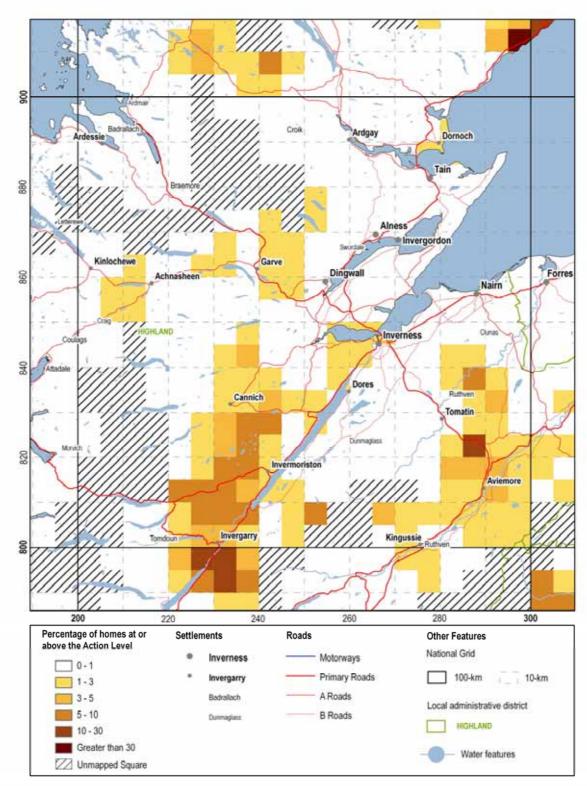

Map 3 Kintyre and the islands of Islay, Jura and Arran, 100-km grid square NR (axis numbers are the coordinates of the National Grid)

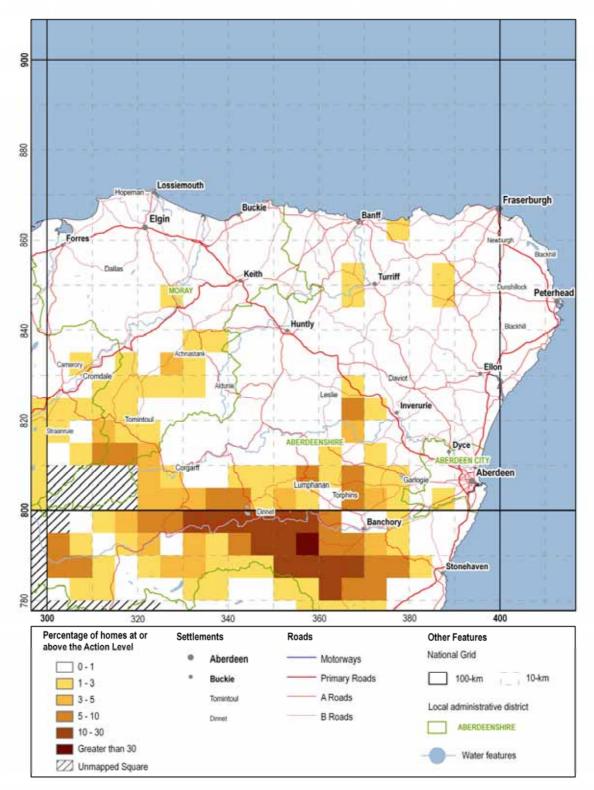

Map 4 Glasgow and the south-western Lowlands, 100-km grid square NS (axis numbers are the coordinates of the National Grid)

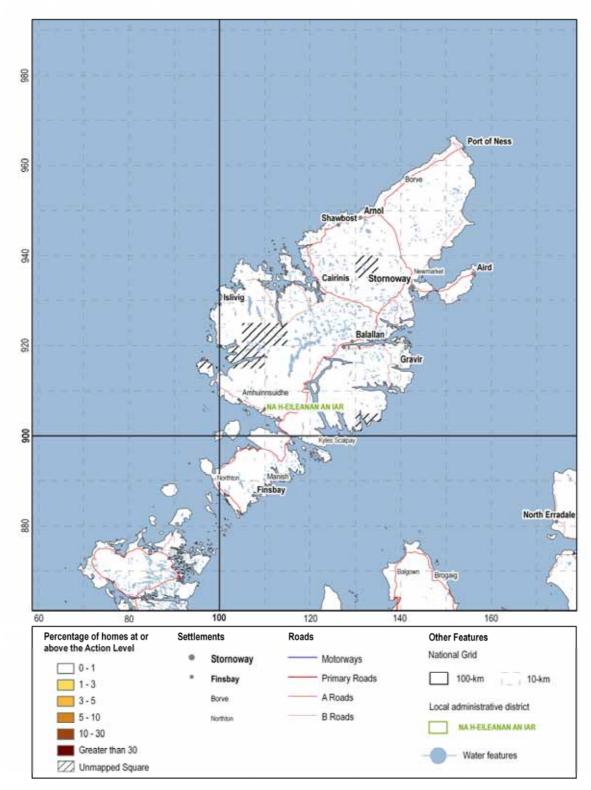

Map 5 Edinburgh and the south-eastern Scottish Borders, 100-km grid square NT (axis numbers are the coordinates of the National Grid)

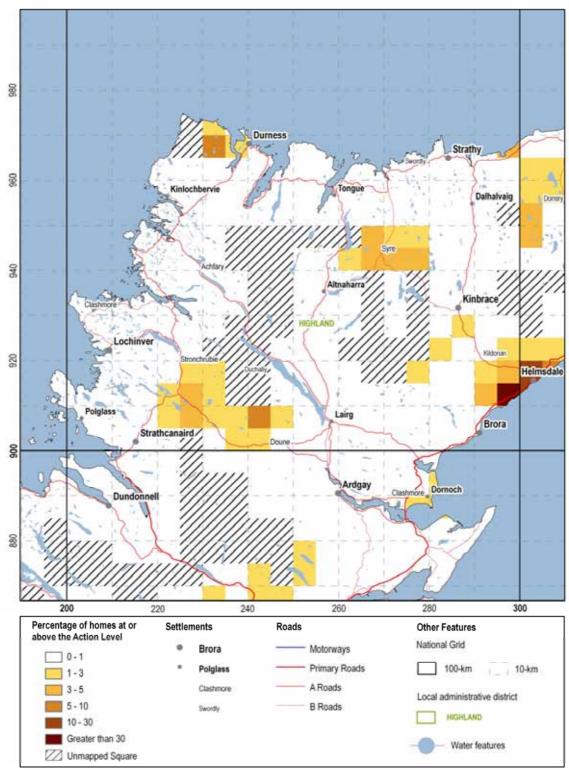

Map 6 North-western Argyll and Bute and the south-western Highlands, 100-km grid square NM (axis numbers are the coordinates of the National Grid)

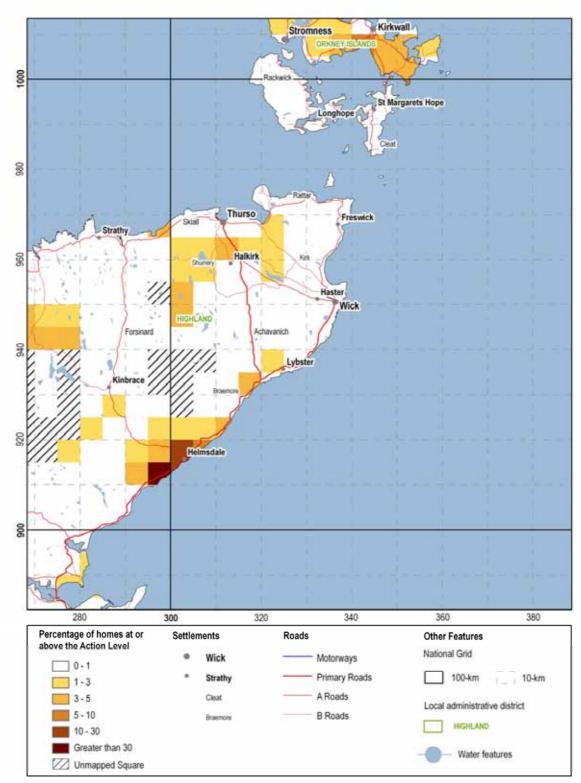

Map 7 Central Scotland, 100-km grid square NN (axis numbers are the coordinates of the National Grid)

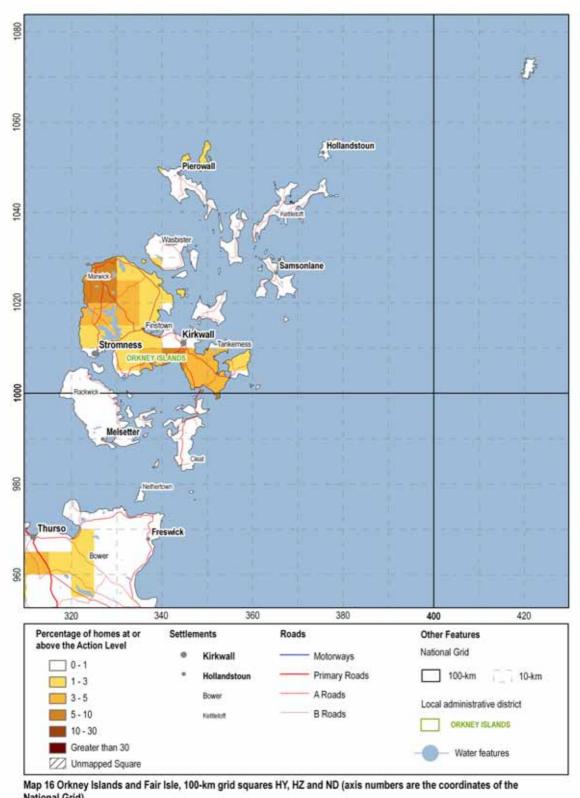

Map 8 Tayside, Angus and southern Aberdeenshire, 100-km grid square NO (axis numbers are the coordinates of the National Grid)

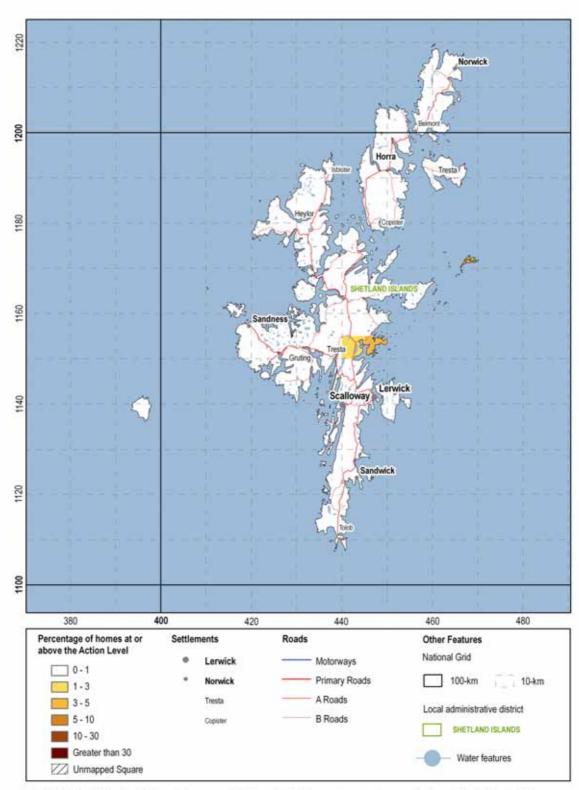

Map 9 Southern Hebrides and western Skye, 100-km grid squares NF and NG (axis numbers are the coordinates of the National Grid)


Map 10 Skye and the western Highlands, 100-km grid square NG (axis numbers are the coordinates of the National Grid)


Map 11 Central Highlands, 100-km grid square NH (axis numbers are the coordinates of the National Grid)


Map 12 Moray and northern Aberdeenshire, 100-km grid square NJ (axis numbers are the coordinates of the National Grid)


Map 13 Northern Hebrides, 100-km grid squares NB, NF and NG (axis numbers are the coordinates of the National Grid)


Map 14 North-western Scotland (Sutherland), 100-km grid squares NC and NH (axis numbers are the coordinates of the National Grid)

Map 15 North-eastern Scotland (Caithness), 100-km grid squares NC and ND (axis numbers are the coordinates of the National Grid)

National Grid)

Map 17 Shetland Islands, 100-km grid squares HP, HT and HU (axis numbers are the coordinates of the National Grid)

APPENDIX A Details of the radon mapping programme and measurement procedures

A1 BACKGROUND

The planning stage of the programme to produce a radon map of Scotland commenced in late 2002. The objective was to obtain 5 or more measurement results in each of the 3,806 or so 5-km squares of the national grid in Scotland. This would allow completion of the radon probability mapping in the same manner as in the two radon Affected Areas already declared in Scotland (inland from Aberdeen and around Helmsdale in the northeast) and elsewhere in the UK.

The UK national radon database contains the results from some 9,200 measurements from previous surveys, however many of these are concentrated in the two radon Affected Areas: only some 386 5-km grid squares contain 5 or more results from these surveys. A further complication is that a significant proportion of the 5-km squares in Scotland, about a third, contain either no dwellings or fewer than 5.

Taking account of these issues, it was calculated that a minimum of a further 8,000 results would be needed to complete the mapping exercise. Experience indicates that there is a need to make allowance for two circumstances:

- (i) Up to 12% of householders starting a three-month radon measurement failed to complete due to illness, death, moving house and other reasons.
- (ii) The positive response rate to offers of a measurement vary between 20% and 40% requiring offers to a multiple of the number of households required. This invariably leads to an excess, more than 5 measurements, in some 5 km squares. The longer the timescale, the smaller the excess as further rounds of letters can be sent once the results of the first round are known.

For planning purposes and assuming a programme over several years, an allowance was made for an extra 2,000 measurements to cover these two circumstances, giving a total of 10,000 measurements.

A2 SELECTING THE SAMPLE

A more detailed analysis using the Post Office Address File (PAF), the Ordnance Survey Address Point file and population data from the 1991 census indicated that at least 765 5-km grid squares contained no dwellings and a further 456 squares contained fewer than 5 dwellings. In addition, some of the more isolated addresses are climbing huts, bothies or hunting lodges with no permanent occupants and sometimes no postal delivery service.

All the domestic addresses in each 5-km grid square with fewer than 5 valid results were identified and any addresses already measured removed, as were any inappropriate ones such as caravans and any obvious non-residential addresses. The number of new

measurements required to give 5 results in each square was calculated and three times this number of addresses selected by a 1 in n procedure for all the addresses in the square. In a significant number of squares, all the addresses were selected due to a low population density.

The 5-km squares bisected by the Scottish/English border were treated differently; only the addresses within Scotland were considered unless these were too few to reach the number required. If this was the case, then all addresses in the square were considered.

A3 INVITING HOUSEHOLDERS TO PARTICIPATE

Letters, addressed to the Householder, were sent to each address asking for their help and offering a radon measurement free of charge: the letter contained a reply slip and a pre-return envelope as well as a leaflet about radon. If no reply was received after six weeks, a reminder letter was sent: a further reminder letter was sent a further six weeks later. The text of the initial letter is reproduced in appendix B3, an example of a reminder letter in B4 and the leaflet in B9. Householders agreeing to participate were sent a measurement kit.

A4 MEASUREMENT PROCEDURE

Measurements in all the surveys, including the earlier surveys, are made with two passive integrating detectors in each dwelling – one in the main living area and one in a regularly used bedroom. The detectors were sent by post to participating householders together with placement instructions (see B10), a short questionnaire to record placement and removal dates and brief details about the dwelling and pre-paid return packaging. The two detectors remain *in situ* for three months and are returned to HPA for analysis. The individual results are combined to reflect typical occupancy patterns. Since indoor radon levels are usually higher in cold weather, the results reported to householders are normalised for typical seasonal variations in radon levels to allow the estimated annual radon concentration to be reported and compared to the radon Action Level (Wrixon et Al, 1988; Pinel et al, 1995). Householders are informed by letter of the result and its significance explained: if appropriate, advice on remedial measures is also provided. The text of the letters is given in appendices B5 to B8.

A5 ITERATION AND STATISTICS

At intervals during the survey, the analysis of the available results and the processes described above were repeated with the aim of achieving the target of 5 results in each 5-km square wherever possible. By the end of the process, over 40,000 letters of invitation were despatched, 10,500 measurement packs deployed and valid results obtained for 9,900 homes.

APPENDIX B Letters and leaflets

B1 TEXT OF THE LETTER TO CHIEF EXECUTIVES AND CHIEF ENVIRONMENTAL HEALTH OFFICERS OF LOCAL AUTHORITIES

Dear Mr Smith

Radon survey of Scottish homes

In a letter dated June this year, Dr Ian Hall (SEPA Sponsorship and Waste Division, Scottish Executive Environment Group) described the forthcoming survey of radon levels in Scottish homes and provided examples of the letters and leaflets to be sent to a sample of householders throughout Scotland. I enclose a second copy of the leaflet.

My purpose in writing is to tell you that NRPB is about to start the contact phase of the survey. The initial batch of contact letters will be despatched next week. We will assess the replies, note the location (i.e. 5 km grid square) of the householders willing to participate and despatch further batches to fill in the gaps at intervals over the next few months.

The initial batch will be the largest and includes «Number» addresses in the area covered by «A1».

As mentioned in the letter from Dr Hall, a radon information folder is available from NRPB (please e-mail me at ...). NRPB publishes a quarterly radon newsletter as an insert in the RHIS journal; it is also available as a free download on our website (www.nrpb.org), follow the route publications - newsletters -> environmental_radon. If you need further information or have any queries please contact myself, my colleague David Rees (...) or any member of the radon team at NRPB (...).

I am sending a copy of this letter addressed to your Chief Environmental Health Officer.

Yours sincerely

Dr Martyn Green Radon Survey (...)

B2 TEXT OF THE LETTER TO THE CHIEF EXECUTIVES OF HEALTH BOARDS AND DIRECTORS OF PUBLIC HEALTH

Dear Mr Jones

Radon survey of Scottish homes

In a letter dated June this year, Dr Ian Hall (SEPA Sponsorship and Waste Division, Scottish Executive Environment Group) described the forthcoming survey of radon levels in Scottish homes and provided examples of the letters and leaflets to be sent to a sample of householders throughout Scotland. I enclose a second copy of the leaflet.

My purpose in writing is to tell you that NRPB is about to start the contact phase of the survey. The initial batch of contact letters will be despatched next week. We will assess the replies, note the location (i.e. 5 km grid square) of the householders willing to participate and despatch further batches to fill in the gaps at intervals over the next few months.

The initial batch will be the largest and includes «Number» addresses in the area covered by «A1».

As mentioned in the letter from Dr Hall, a radon information folder is available from NRPB (please e-mail me at ...). NRPB publishes a quarterly radon newsletter as an insert in the RHIS journal; it is also available as a free download on our website (www.hpa.org.ukfollow the route publications -> newsletters -> environmental_radon. If you need further information or have any queries please contact myself or my colleague . (...).

I am sending a copy of this letter addressed to your Director of Public Health.

Yours sincerely

Dr Jill Meara FFPH, Deputy Director/Public Health Physician (...)

B3 TEXT OF THE INITIAL LETTER TO HOUSEHOLDERS REQUESTING THEIR CO-OPERATION

Dear Householder

NATIONAL SURVEY OF RADON IN HOMES

I'm writing to let you know that your home has been selected as part of the Scottish Executive's official Survey of Radon in Homes. The Environment and Rural Affairs Department (ERAD) has asked the Health Protection Agency (HPA) to measure homes across Scotland to find out about radon levels. Yours is one of a small sample chosen to take part in the survey.

The radon test is simple, completely free and done by post: **so no one will call.** The enclosed leaflet gives details and information about radon. To start the test add your name and telephone number to the form below and return it to HPA - it really is that easy! The return envelope is prepaid, so it won't cost you anything to reply.

Although the test is entirely voluntary, by taking part you will be helping us to make more accurate forecasts about radon levels, to assess the health risk from radon and to help to ensure any money spent on radon reduction is used most wisely.

You are one of just a few households selected to help with this study - so your participation really does count. We will inform you of the result of the test in your home but otherwise individual data will be treated in confidence by HPA and ERAD.

I look forward to receiving your reply. Please contact me at the address below if you have any queries or comments on this survey.

Yours faithfully

David Rees

Radon	Survey	
PS	This is a free offer, but please note the offer is open	only for a limited period.
«A1» «A2» «A3»		«ID»/STIMSCT5B
«A4» I wish to	o accept a free radon measurement as described in tl	Date «ID» he letter from HPA.
	Mr/Mrs/Ms etc) Initial(s)	
PLEAS		(BLOCK CAPITALS
	·	Telephone

B4 TEXT OF THE REMINDER LETTER TO HOUSEHOLDERS REQUESTING THEIR CO-OPERATION

Dear Householder

NATIONAL SURVEY OF RADON IN HOMES

I'm writing to you again as we have no record of a reply to our previous letter. We would like your help as part of the Scottish Executive's official Survey of Radon in Homes. The Environment and Rural Affairs Department (ERAD) has asked the Health Protection Agency (HPA) to measure homes across Scotland to find out about radon levels. Yours is one of a small sample chosen to take part in the survey.

The radon test is simple, completely free and done by post: **so no one will call**. The enclosed leaflet gives details and information about radon. To start the test add your name and telephone number to the form below and return it to HPA - **it really is that easy!** The return envelope is prepaid, so it won't cost you anything to reply.

Although the test is entirely voluntary, by taking part you will be helping us to make more accurate forecasts about radon levels, to assess the health risk from radon and to help to ensure any money spent on radon reduction is used most wisely.

You are one of just a few households selected to help with this study **- so your participation really does count**. We will inform you of the result of the test in your home but otherwise individual data will be treated in confidence by HPA and ERAD.

I look forward to receiving your reply. Please contact me at the address below if you have any queries or comments on this survey.

Yours faithfully

David Rees

Radon Survey	
PS This is a free offer, but please note the offer is open o	nly for a limited period.
«A1» «A2» «A3»	«ID»/STIMSCT5BR
«A4» I wish to accept a free radon measurement as described in th	Date «ID» e letter from HPA.
Title: (Mr/Mrs/Ms etc) Initial(s) Surname	(BLOCK CAPITALS
PLEASE)	(BESSIT SITE TITLES
Signed: number:	Telephone

B5 TEXT OF THE LETTER FOR A RESULT BELOW 100 BQ M⁻³

Dear Mr and Mrs Smith

Radon in dwellings

I am writing to tell you the result of the radon measurements and whether you should consider further action.

The Action Level in the UK for radon in homes is 200 Bq m⁻³ (becquerel per cubic metre) and it is recommended that concentrations at or above the Action Level should be reduced to be as low as reasonably practicable. The Action Level is the annual average for the whole dwelling. The national average radon level is 20 Bq m⁻³.

The readings from the detectors you returned, assuming that they were placed in accordance with our instruction leaflet, indicate an average radon level for your home over the year of "Reported_conc" Bq m⁻³. When calculating the average, correction factors have been applied that include an adjustment to allow for seasonal variations. As the result is below the Action Level it is not necessary to reduce the level further. Information to supplement the leaflet sent to you with the offer to test is available on the website at www.hpa.org.uk/radiation/radon/index.htm. Radon guides published by DEFRA are also available on request.

If the test was organised by a third party, such as your local council or housing association, the result will normally be given to them. In addition, the result of a test paid for by a tenant will be given to the landlord on request unless the tenant has, in writing, asked us not to. Otherwise, your result will not be disclosed to anyone else without your written permission.

Thank you for undertaking the radon measurement. Please keep this letter in a safe place as a charge may be made for providing further copies.

Yours sincerely

J Smithard(Mrs)
Office Manager - Radon Survey

B6 TEXT OF THE LETTER FOR A RESULT BETWEEN 100 AND 170 BQ M⁻³

Our ref: «Meas_id»/JRS170

Date

Dear «sal»

Radon in dwellings

I am writing to tell you the result of the radon measurements and whether you should consider further action.

The Action Level in the UK for radon in homes is 200 Bq m⁻³ (becquerel per cubic metre) and it is recommended that concentrations at or above the Action Level should be reduced to be as low as reasonably practicable. The Action Level is the annual average for the whole dwelling. The national average radon level is 20 Bq m⁻³.

The readings from the detectors you returned, assuming that they were placed in accordance with our instruction leaflet, indicate an average radon level for your home over the year of «Reported_conc» Bq m⁻³. When calculating the average, correction factors have been applied that include an adjustment to allow for seasonal variations. As the result is below the Action Level it is not necessary to reduce the level further, but you are, of course, free to do so if you wish.

The enclosed literature provides general information on radon and how to lower levels. Further advice can be obtained from the contacts listed in the guides. If you decide to take remedial action, once the work is completed, the radon level should be checked again to ensure that it has been effective. We occasionally have research funding available to provide free or reduced cost retests, but only if the work undertaken is likely to effective and the results of your tests can be made available to your local council. Otherwise the standard fee, currently £38.78 will usually apply.

If the test was organised by a third party, such as your local council or housing association, the result will normally be given to them. In addition, the result of a test paid for by a tenant will be given to the landlord on request unless the tenant has, in writing, asked us not to. Otherwise, your result will not be disclosed to anyone else without your written permission.

Thank you for undertaking the radon measurement. Please keep this letter in a safe place as a charge may be made for providing further copies.

Yours sincerely

Jane Smithard(Mrs)
Office Manager - Radon Survey

B7 TEXT OF THE LETTER FOR A RESULT BETWEEN 170 AND 200 BQ M⁻³

Our ref: «Meas_id»/JRS200

Date

Dear «sal»

Radon in dwellings

I am writing to tell you the result of the radon measurements and whether you should consider further action.

The Action Level in the UK for radon in homes is 200 Bq m⁻³ (becquerel per cubic metre) and it is recommended that concentrations at or above the Action Level should be reduced to be as low as reasonably practicable. The Action Level is the annual average for the whole dwelling. The national average radon level is 20 Bq m⁻³.

The readings from the detectors you returned, assuming that they were placed in accordance with our instruction leaflet, indicate an average radon level for your home over the year of «Reported_conc» Bq m⁻³. When calculating the average, correction factors have been applied that include an adjustment to allow for seasonal variations. As the result is approaching the Action Level you might consider taking steps to reduce the level.

The enclosed literature provides general information on radon and how to lower levels. Further advice can be obtained from the contacts listed in the guides. If you decide to take remedial action, once the work is completed, the radon level should be checked again to ensure that it has been effective. We occasionally have research funding available to provide free or reduced cost retests, but only if the work undertaken is likely to effective and the results of your tests can be made available to your local council. Otherwise the standard fee, currently £38.78 will usually apply.

If the test was organised by a third party, such as your local council or housing association, the result will normally be given to them. In addition, the result of a test paid for by a tenant will be given to the landlord on request unless the tenant has, in writing, asked us not to. Otherwise, your result will not be disclosed to anyone else without your written permission.

Thank you for undertaking the radon measurement. Please keep this letter in a safe place as a charge may be made for providing further copies.

Yours sincerely

Jane Smithard(Mrs)
Office Manager - Radon Survey

B8 TEXT OF THE LETTER FOR A RESULT OVER 200 BQ M⁻³

Our ref: «Meas_id»/JRS750

Date

Dear «sal»

Radon in dwellings

I am writing to tell you the result of the radon measurements and whether you should consider further action.

The Action Level in the UK for radon in homes is 200 Bq m⁻³ (becquerel per cubic metre) and it is recommended that concentrations at or above the Action Level should be reduced to be as low as reasonably practicable. The Action Level is the annual average for the whole dwelling. The national average radon level is 20 Bq m⁻³.

The readings from the detectors you returned, assuming that they were placed in accordance with our instruction leaflet, indicate an average radon level for your home over the year of «Reported_conc» Bq m⁻³. When calculating the average, correction factors have been applied that include an adjustment to allow for seasonal variations. As the result is at or above the Action Level, you are advised to take steps to reduce the level.

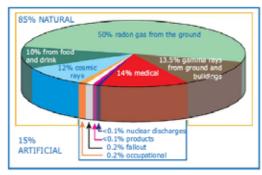
The enclosed literature provides general information on radon and how to lower levels. Further advice can be obtained from the contacts listed in the guides. Once the work is completed, the radon level should be checked again to ensure that it has been effective. We occasionally have research funding available to provide free or reduced cost retests, but only if the work undertaken is likely to effective and the results of your tests can be made available to your local council. Otherwise the standard fee, currently £38.78 will usually apply.

If the test was organised by a third party, such as your local council or housing association, the result will normally be given to them. In addition, the result of a test paid for by a tenant will be given to the landlord on request unless the tenant has, in writing, asked us not to. Otherwise, your result will not be disclosed to anyone else without your written permission.

Thank you for undertaking the radon measurement. Please keep this letter in a safe place as a charge may be made for providing further copies.

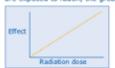
Yours sincerely

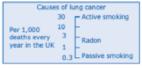
Jane Smithard(Mrs)
Office Manager-Radon Survey


B9 RADON LEAFLET (PRINTED ON A4 AND FOLDED TO FORM A 4 PAGE A5 LEAFLET)

Radon is a natural radioactive gas which enters buildings from the ground and gives radiation doses to the occupants

Sources of Radiation


Everybody is exposed to radiation from natural and man-made sources. The pie chart shows the average exposure from all sources. Some 85% of the total comes from natural sources with over half from radon in homes.



Radon is measured in becquerels per cubic metre of air (Bq m⁻³). The average concentration in UK homes is 20 Bq m⁻³ but levels vary considerably. Indoor radon is the most variable source of radiation exposure and the levels in neighbouring homes can vary by a factor of ten or more. Following advice from the National Radiological Protection Board, the Government recommends that householders with homes above the Action Level of 200 Bq m⁻³(expressed as the annual average), should take action to reduce the radon concentration.

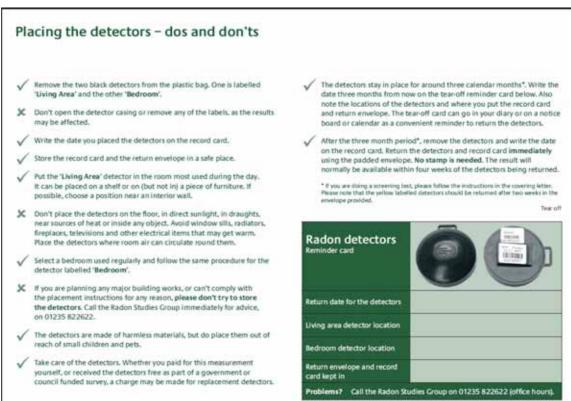
Risk of Exposure

A study by the Imperial Cancer Research Fund at Oxford University, has confirmed that exposure to radon in homes leads to an increase in the risk of lung cancer. The higher the radon level and the longer you are exposed to radon, the greater the risk.

Health studies from around the world link exposure to radon and an increased risk of lung cancer. Smoking 15 cigarettes a day multiplies the risk factor by ten.

Radon Measurements

Radon levels in homes are measured with two small plastic detectors which are sent by post and left in place for three months. The detectors are small, harmless containers with a sensitive plastic element. They do not give off any radiation. Measurements should not be made if the property is unoccupied or undergoing building works.


Radon detector

Remedial Measures

Radon remedial measures are generally simple and effective and only recommended in a small number of homes. In areas where high radon levels are known to be more common, a grant towards remediation work may be available.

B10 INSTRUCTION LEAFLET FOR THE RADON MEASUREMENT PACK

APPENDIX C Data tables of measurements in dwellings

Table C1. Overall summary data for Scotland

Dwellings	,	Results, Bq	Results, Bq m ⁻³							
Total	Measured	Arithmetic average	Geometric average	Population weighted average*	At or above Action Level					
2440000	19100	37	20	16	370					

^{*} value from the UK national radon survey (Wrixon et al 1988)

Table C2. Summary data by local authority. (Not representative, see text)

		Dwellings		Results, Bq	m ⁻³		
Code	Local authority	Total	Measured	Arithmetic average	Geometric average	Highest	At or above Action Level
QA	Aberdeen City	104000	240	33	25	200	1
QB	Aberdeenshire	106000	3200	63	37	1600	157
QC	Angus	52800	460	29	22	230	2
QD	Argyll and Bute	43300	1400	22	13	940	12
QE	Scottish Borders	55100	1100	36	26	560	12
QF	Clackmannanshire	23400	49	23	16	100	0
QG	West Dunbartonshire	42400	71	21	15	100	0
QH	Dumfries and Galloway	71500	1500	34	24	610	12
QJ	Dundee City	73000	40	26	20	73	0
QK	East Ayrshire	54800	290	15	11	110	0
QL	East Dunbartonshire	43900	70	14	11	50	0
QM	East Lothian	43500	220	29	21	200	2
QN	East Renfrewshire	36400	. 76	19	16	84	0
QP	Edinburgh, City of	232000	170	18	14	100	0
QQ	Falkirk	70200	110	16	11	86	0
QR	Fife	169000	500	21	16	230	2
QS	Glasgow City	297000	180	11	9	47	0
QT	Highland	108000	4300	42	22	3400	111
QU	Inverclyde	37600	63	16	13	82	0
QW	Midlothian	34900	110	26	18	210	1
QX	Moray	41400	490	29	19	340	5
QY	North Ayrshire	65200	290	18	13	91	0
QZ	North Lanarkshire	147000	150	12	9	69	0
RA	Orkney Islands	9900	520	61	23	4600	26
RB	Perth and Kinross	67100	870	33	25	400	4
RC	Renfrewshire	82200	110	14	10	65	0
RD	Shetland Islands	10300	550	33	14	870	18
RE	South Ayrshire	53600	300	18	13	210	1
RF	South Lanarkshire	140000	430	24	16	270	2
RG	Stirling	38700	410	21	17	130	0
RH	West Lothian	73800	150	14	11	94	0
RJ	Eilean Siar	13600	670	11	7	710	1
	Totals (rounded)	2440000	19100	37	20	4600	370

Table C3. Summary data by postcode area

	Posttown	Dwellings	3	Results, Bq	m ⁻³	
Postcode area		Total	Measured	Arithmetic average	Geometric average	At or above Action Level
AB	Aberdeen	221000	3700	60	35	163
DD	Dundee	134000	540	29	22	2
DG	Dumfries	71300	1500	34	24	11
EH	Edinburgh	400000	830	26	18	5
FK	Falkirk	123000	520	24	17	1
G	Glasgow	552000	710	16	12	0
HS	Stornoway	13600	670	11	7	1
IV	Inverness	103000	2400	27	17	18
KA	Kilmarnock	173000	870	17	12	1
KW	Kirkwall	25400	1900	65	31	101
KY	Kirkcaldy	168000	530	23	17	3
ML	Motherwell	171000	510	26	16	5
PA	Paisley	154000	1600	21	12	11
PH	Perth	77400	1500	35	23	21
TD	Galashiels	46300	910	34	25	8
ZE	Shetland	10300	550	33	14	18

Table C4. Summary data by postcode district (5 or more results)

		,	.				,				
	Dwelling	gs	Results, B	Bg m ⁻³	•		Dwelling	gs	Results, B	lg m ⁻³	
Postcode district	Total	Measured			At or above Action Level	Postcode district	Total	Measured	Arithmetic average		At or above Action Level
AB10	10900	24	36	26	1	AB42	14900	120	25	16	1
AB11	10000	16	29	22	0	AB43	10500	95	24	15	2
AB12	10800	88	18	12	0	AB44	1900	7	32	17	0
AB13	960	8	45	34	0	AB45	5400	92	27	17	2
AB14	2300	17	31	28	0	AB51	13700	240	48	30	6
AB15	15900	74	41	32	0	AB52	1900	73	45	28	2
AB16	13300	31	20	16	0	AB53	5400	110	46	29	2
AB21	9700	52	26	22	0	AB54	5200	190	28	20	1
AB22	7100	12	41	31	0	AB55	4300	92	40	25	2
AB23	4600	36	30	23	0	AB56	6800	44	17	12	0
AB24	17600	10	27	23	0	DD10	10200	77	25	20	0
AB25	8900	9	21	18	0	DD11	13300	63	27	21	0
AB30	2900	79	45	28	2	DD2	20900	35	30	23	0
AB31	6200	430	78	52	25	DD3	19500	14	43	32	1_
AB32	4900	96	39	26	1	DD4	21500	15	28	21	0
AB33	2200	130	34	26	1	DD5	14100	31	20	16	0
AB34	2300	560	94	73	42	DD6	4300	19	33	27	0
AB35	1600	430	123	85	66	DD7	5200	18	22	19	0
AB36	320	. 71	37	28	0	DD8	13400	170	29	23	0
AB37	760	70	49	31	3	DD9	5300	90	35	24	1_
AB38	2100	52	34	26	0	DG1	12300	92	25	21	0
AB39	7300	130	48	31	3	DG10	2000	54	44	28	2
AB41	8600	160	31	22	. 1	DG11	5900	140	37	24	1_

	Dwelling	gs	Results, E	ig m ⁻³			Dwelling	gs	Results, B	lg m ⁻³	
Postcode district	Total	Measured		Geometric average	At or above Action Level	Postcode district	Total	Measured		Geometric average	At or above Action Level
DG12	5900	33	16	14	0	EH49	7200	23	18	13	0
DG13	1500	80	56	41	1	EH5	8900	11	11	10	0
DG14	610	41	20	17	0	EH51	7000	12	20	11	0
DG16	1800	9	18	15	0	EH52	8600	18	17	14	0
DG2	10900	140	36	27	0	EH54	22400	26	11	10	0
DG3	2300	97	35	24	1	EH55	3700	28	10	9	0
DG4	2100	35	33	22	0	EH6	21400	7	16	12	0
DG5	2800	46	45	35	1	EH7	19100	6	16	13	0
DG6	2600	62	37	29	1	FK1	14100	24	11	9	0
DG7	6100	250	32	24	1	FK10	16800	29	18	13	0
DG8	6500	300	34	24	3	FK13	3000	6	17	11	0
DG9	8000	140	22	16	0	FK14	1900	25	54	38	0
EH10	14500	14	27	19	0	FK15	4400	46	30	23	0
EH11	21500	6	10	9	0	FK16	850	8	18	17	0
EH12	17900	10	17	12	0	FK17	1700	32	23	17	0
EH13	6400	9	22	16	0	FK18	120	9	14	12	0
EH14	17300	25	16	14	0	FK19	320	25	29	20	0
EH16	13300	14	18	13	0	FK2	20500	28	20	14	0
EH17	8300	5	13	11	0	FK20	180	28	41	23	1
EH19	5200	7	15	13	0	FK21	560	48	28	23	0
EH21	11200	15	15	12	0	FK3	8700	6	17	15	0
EH22	12500	22	31	20	<u></u>	FK4	5600	14	16	13	0
EH23	3200	32	29	20	0	FK5	7700	8	14		0
EH26	7300	28	26	19	0	FK6	6100	17	12	9	0
EH27	1100	15	26	16	0	FK7	13500	25	21	16	0
EH3	13700		13	11	0	FK8	8400	110	20	16	0
EH30	4100	13	13	11	0	FK9	5200	18	24	21	0
EH31	1300	13 8	20	17	0	G11	12200	6	7		0
EH32	8100	24	24	19	0	G13	16300	7	13	11	0
EH33	5600	10	23	19	0	G14	9400	5	20	16	,
EH34	1000	,	23	21	0			8	11	9	0
	960	11		17	0	G20 G21	16000	14	16	13	0
EH35	•	6	23				16600			•	•
EH36	180	7	16 16	14 14	0	G23	3200	5	15	12	0
EH37	720	11	•	-	0	G32	18200	14	10	. 8	0
EH38	170	19_	46	35	0	G33	17800	14	12	9	0
EH39	4300	37	28	22	0	G41	14500	11	7	7	0
EH4	25600	20	21	15	0	G42	15400	10	7	7	0
EH40	980	9	43	35	0	G43	8000	7	16	15	0
EH41	5400	46	35	24	1_	G44	13000	8	11	10	0
EH42	4600	39	32	23	1_	G46	11300	7	18	15	0
EH43	460	9	36	27	. 0	G51	13600	6	7	. 7	0
EH44	1600	28	45	37	0	G52	14400	14	13	12	0
EH45	4900	61	45	31	2	G60	2300	6	22	20	0
EH46	1300	52	37	26	0	G61	11000	12	12	11	0
EH47	12000	21	10	9	0	G62	5700	17	15	13	. 0
EH48	14900	29	13	10	0	G63	4000	84	16	13	0

	Dwelling	gs	Results, B	q m ⁻³			Dwelling	<u>js</u>	Results, B	q m ⁻³	
Postcode district	Total	Measured		Geometric average	At or above Action Level	Postcode district	Total	Measured		Geometric average	At or above Action Level
G64	10900	18	20	16	0	IV27	2400	260	20	12	1
G65	6200	6	13	11	0	IV28	290	31	27	19	0
G66	16400	30	11	10	0	IV3	9400	35	149	44	2
G67	16000	19	13	10	0	IV30	14600	89	19	14	0
G68	6600	6	11	9	0	IV31	3300	15	17	14	0
G69	13800	16	10	9	0	IV32	2200	33	25	18	0
G71	11900	11	16	15	0	IV36	7100	82	19	15	0
G72	19700	11	8	7	0	IV4	1900	100	36	28	0
G73	15400	15	15	13	0	IV40	1300	110	20	14	1
G74	17100	16	13	9	0	IV41	170	8	37	31	0
G75	16100	15	31	19	0	IV42	240	11	22	15	0
G76	8900	21	16	13	0	IV43	140	16	14	11	0
G77	9200	20	24	17	0	IV44	150	14	15	10	0
G78	10100	30	20	17	0	IV45	120	13	11	8	0
G81	18600	14	16	12	0	IV46	52	11	21	16	0
G82	11700	25	17	13	0	IV47	300	33	11	8	0
G83	11500	83	23	17	0	IV48	44	5	11	6	0
G84	9100	52	18	14	0	IV49	560	45	27	15	1
HS1	2800	7	12	9	0	IV5	500	9	43	33	0
HS2	6700	300	14	8	1	IV51	2400	130	13	9	0
HS3	730	100	11	8	0	IV52	200	9	20	12	0
HS4	160	6	6	3	0	IV53	78	10	24	15	0
HS5	160	13	12	10	0	IV54	710	78	26	16	0
HS6	960	99	9	6	0	IV55	730	71	10	8	0
HS7	600	31	11	8	0	IV56	150	23	15	11	0
HS8	930	78	7	6	0	IV6	1800	37	28	22	0
HS9	600	41	7	5	0	IV63	1100	80	76	50	7
IV1	1300	7	69	38	1	IV7	2400	37	39	20	1
IV10	1100	10	32	25	0	IV8	360	6	33	29	0
IV11	450	16	34	27	0	IV9	570	14	39	33	0
IV12	5600	88	30	23	0	KA1	13600	34	13	11	0
IV13	270	50	27	22	0	KA10	7500	11	9	7	0
IV14	890	27	47	35	0	KA11	9000	17	21	14	0
IV15	2600	20	26	20	0	KA12	9100	10	9	9	0
IV16	750	12	19	16	0	KA13	7500	13	15	11	0
<u>IV17</u>	2700	40	29	24	0	KA15	3100	17	15	12	0
IV18	2700	32	23	21	0	KA16	1600	8	19	16	0
IV19	2200	42	34	24	0	KA17	1800	14	16	13	0
IV2	20400	170	27	18	1	KA18	9900	77	16	12	0
IV20	1400	47	19	16	0	KA19	3600	60	22	17	0
IV21	600	52	14	10	0	KA2	3100	12	12	9	0
IV22	800	110	15	11	0	KA20	4300	5	13	12	0
IV23	410	79	27	19	0	KA21	5800	8	13	12	0
IV24	760	54	30	23	0	KA22	5300	5	12	10	0
IV25	1200	45	45	27	2	KA23	2300	17	9	8	0
IV26	980	50	19	12	0	KA24	3000	18	20	14	0

	Dwelling	gs	Results, B	g m ⁻³			Dwelling	gs	Results, B	g m ⁻³	
Postcode district	Total	Measured		Geometric average	At or above Action Level	Postcode district	Total	Measured		Geometric average	At or above Action Level
KA25	3400	11	14	10	0	ML10	4500	44	21	17	0
KA26	5500	150	21	14	1	ML11	15600	130	24	17	0
KA27	2700	120	23	16	0	ML12	3900	170	44	28	5
KA28	1300	10	5	5	0	ML2	18300	17	18	12	0
KA29	750	11	13	13	0	ML3	24100	25	11	9	0
KA3	15900	64	17	11	0	ML5	20700	21	9	8	0
KA30	6100	20	17	14	0	ML6	23400	31	8	6	0
KA4	2500	15	12	9	0	ML7	6900	13	15	9	0
KA5	4400	32	16	13	0	ML8	8400	19	11	10	0
KA6	8500	62	10	8	0	ML9	10400	15	12	9	0
KA7	13300	27	10	9	0	PA1	13100	8	14	12	0
KA8	9700	12	9	9	0	PA11	2500	12	22	15	0
KA9	7600	13	11	9	0	PA12	1500	11	17	12	0
KW1	5300	150	28	19	1	PA13	2000	13	23	18	0
KW10	790	17	28	23	0	PA14	7600	11	13	12	0
KW11	71	25	35	25	0	PA15	9500	8	16	13	0
KW12	770	46	51	28	2	PA16	12200	21	15	13	0
KW13	52	26	17	12	0	PA17	1100	9	10	8	0
KW14	6200	180	37	22	4	PA18	950	. 7	8	6	0
KW15	3900	27	81	31	2	PA2	18700	12	10	9	. 0
KW16	2000	110	83	22	. 4	PA20	3200	49	12	9	0
KW17	4100	380	53	23	20	PA21	550	32	14	10	0
KW2	41	9	38	20	. 0	PA22	180	36	17	14	0
KW3	470	170	60	45		PA23	6500	68	18	14	0
KW5	150	61	74	46	. 5	PA24	300	26	16	14	0
KW6	200	67	53	37	2	PA25	45	. 5	19	17	0
KW7	64	18	81	53	1	PA26	81	11	16	13	0
KW8	480	340	150	90	57	PA27	410	27	22	17	0
KW9	970	280	25	20	0	PA28	3900	120	24	16	0
KY1	13100	21	24	14	1	PA29	1200	85	21	13	. 0
KY10	5000	37	18	16	0	PA3	12000	13	12		0
KY11	25900	55	20	18	. 0	PA30	710	23	44	29	. 0
KY12	18400	41	16	12	. 0	PA31	2600	130	27	17	3_
KY13	4600	57	41	28	1	PA32	670	38	26	14	0
KY14	3100	42	31	23	0	PA33	360	32	15	13	0
KY15	10000	70	24	19	0	PA34	5400	160	30	17	4
KY16	9900	53	20	15	0	PA35	640	53	29	18	1
KY2	13800	13	20	18	0	PA36	32	10	14	12	0
KY3	5200	16	21	16	. 0	PA37	1200	41	43	21	1_
KY4	9700	20	13	10	0	PA38	470	40	24	19	. 0
KY5	9100	16	13	. 12	. 0	PA4	10600	. 7	12	. 9	. 0
KY6	8800	21	15	. 12	0	PA41	94	10	24	19	0
KY7	12400	17	18	14	. 0	PA42	590	28	17	10	. 0
KY8	17200	37	25	16	1_	PA43	440	10	9	. 6	. 0
KY9	1500	12	12	11	. 0	PA44	160	24	33	13	1
ML1	24500	21	13	11	0	PA45	68	7	30	26	0

	Dwelling	gs	Results, E	g m ⁻³			Dwelling	<u>js</u>	Results, B	Sg m ⁻³	
Postcode district	Total	Measured		Geometric average	At or above Action Level	Postcode district	Total	Measured		Geometric average	At or above Action Level
PA46	120	10	22	20	0	PH3	2700	36	37	23	1
PA47	120	7	10	9	0	PH31	250	22	41	26	1
PA48	180	13	8	5	0	PH32	380	19	95	58	3
PA49	110	6	5	4	0	PH33	5300	99	33	21	1
PA5	10400	15	11	9	0	PH34	490	51	74	31	6
PA6	2600	9	20	18	0	PH35	190	29	29	23	0
PA60	150	29	12	9	0	PH36	790	79	14	9	0
PA61	140	16	21	14	0	PH37	82	18	17	14	0
PA62	25	6	13	10	0	PH38	110	30	18	14	0
PA64	57	9	11	10	0	PH39	190	17	21	15	0
PA65	100	13	85	16	1	PH4	370	9	40	29	0
PA66	93	19	7	5	0	PH40	120	10	7	6	0
PA67	170	15	9	. 7	0	PH41	450	34	17	13	0
PA69	21	. 7	. 8	. 5	0	PH42	47	8	17	13	0
PA7	2100	6	12	10	0	PH43	14	6	13	. 7	0
PA70	57	9	11	. 7	0	PH49	550	24	19	15	0
PA71	25	9	43	17	0	PH5	400	9	24	21	0
PA72	210	23	. 7	5	0	PH50	530	6	37	31	0
PA73	42	12	6	4	0	PH6	1300	36	28	22	0
PA74	22	9	. 8	. 5	0	PH7	4200	33	23	19	0
PA75	700	37	10	7	0	PH8	1100	48	36	29	0
PA76	90	9	6	3	0	PH9	500	23	35	26	0
PA77	440	35	10	. 5	0	TD1	8500	. 77	31	22	1_
PA78	120	21	7	. 4	0	TD10	530	25	22	18	0
PA8	6100	9	9	. 8	0	TD11	3500	110	32	25	0
PH1	20300	100	25	18	0	TD12	1500	30	43	25	1_
PH10	5100	80	40	29	1_	TD13	440	24	24	18	0
PH11	1700	46	25	21	0	TD14	3300	39	33	20	1_
PH12	920	15	19	16	0	TD15	630	26	43	32	0
PH13	1800	27	29	23	0	TD2	1100	32	39	26	1_
PH14	690	14	28	22	0	TD3	440	25	19	16	0
PH15	1800	91	34	27	0	TD4	1000	10	24	18	0
PH16	2100	66	42	32	1_	TD5	5600	110	44	31	2
PH17	140	26	25	19	0	TD6	3800	45	32	26	0_
PH18	410	32	46	33	0	TD7	3600	110	37	29	0
PH19	56	17	29	23	0	TD8	3000	68	35	21	1_
PH2	15500	110	28	22	0	TD9	9400	180	33	26	1_
PH20	810	38	38	26	0	ZE1	3900	23	39	19	1_
PH21	1100	47	48	36	1	ZE2	6200	500	34	14	17
PH22	1900	22	71	43	2	ZE3	220	. 18	16	. 9	. 0
PH23	360	15	105	61	1_						
PH24	440	17	53	43	0						
PH25	520	31	60	45	1_						
PH26	1800	57	36	20	2						

Table C5. Summary data by postcode sector (5 or more results)

	Dwellin	ıgs	Results, B		_		Dwellin	ngs	Results, Bq m ⁻³		_
Postcode sector	Total	Measured	Arithmetic		At or above Action Level	Postcode sector	Total	Measured	Arithmetic		At or above Action Level
AB10 1	1400	6	69	49	11	AB42 1	4700	6	15	13	0
AB10 6	5300	7	24	22	0	AB42 2	3600	5	12	12	0
AB10 7	4300	11	25	20	0	AB42 3	1600	24	20	13	0
AB11 9	1800	5	17	16	0	AB42 4	1500	36	36	21	1
AB12 3	3600	11	19	13	0	AB42 5	2000	19	25	14	0
AB12 4	3000	61	13	10	0	AB43 6	1500	33	34	20	2
AB12 5	4200	16	41	27	0	AB43 7	1600	21	22	16	0
AB13 0	960	8	45	34	0	AB43 8	1900	33	15	11	0
AB14 0	2300	17	31	28	0	AB43 9	5500	8	19	12	0
AB15 4	2100	10	23	23	0	AB44 1	1900	7	32	17	0
AB15 5	1800	11	29	25	0	AB45 1	2000	6	12	10	0
AB15 6	2800	6	23	21	0	AB45 2	2200	48	16	13	0
AB15 7	2400	12	56	49	0	AB45 3	1200	38	44	26	2
AB15 8	3900	8	30	24	0	AB51 0	4100	65	31	23	0
AB15 9	2800	27	50 54	39	0	AB51 3	2400	5	45	34	0
AB16 5	4900	10	25	39	0	AB51 4	2800	9	11	9	0
		10	18	13	0	AB51 4 AB51 5	2800	94	41	30	1
AB16 6	3700				•	AB51 5 AB51 7					
AB16 7	4700	11	17	15	0		860	51	98	56	5
AB21 0	3200	38	28	23	0	AB51 8	720	20	30	20	0
AB21 7	2700	. 8	18	16	0	AB52 6	1900	73	45	28	2
AB21 9	3800	6	25	21	0	AB53 4	2700	30	53	37	. 1
AB22 8	7100	12	41	31	0	AB53 5	890	26	36	18	1
AB23 8	4600	36	30	23	0	AB53 6	590	13	62	52	0
AB25 2	2900	7	22	18	0	AB53 8	1200	38	43	27	0
AB30 1	2900	79	45	28	2	AB54 4	1400	120	29	21	1_
AB31 4	1900	160	75	46	12	AB54 6	450	38	37	27	0
AB31 5	3600	180	54	44	0	AB54 7	1200	31	14	11	0
AB31 6	760	98	130	. 81	13	AB54 8	2200	9	33	26	0
AB32 6	4500	76	35	23	1_	AB55 4	1000	25	67	46	2
AB32 7	370	20	54	43	0	AB55 5	2500	31	37	25	0
AB33 8	2200	130	34	26	1	AB55 6	740	36	24	16	0
AB34 4	530	54	54	43	1	AB56 1	3800	13	12	11	0
AB34 5	1800	500	99	78	41	AB56 4	2200	16	12	8	0
AB35 5	1600	430	120	85	66	AB56 5	850	15	27	20	0
AB36 8	320	71	37	28	0	DD10 0	2500	41	27	22	0
AB37 9	760	70	49	31	3	DD10 8	3900	. 5	12	9	0
AB38 7	1000	24	36	28	0_	DD10 9	3800	31	24	20	0
AB38 9	1100	28	32	24	0	DD11 2	2400	20	25	20	0
AB39 2	4900	69	40	29	0	DD11 4	3400	24	36	29	0
AB39 3	2400	63	56	33	3	DD11 5	2600	14	19	16	0
AB41 6	1200	27	29	20	0	DD2 1	4100	7	43	33	0
AB41 7	2000	53	36	26	1	DD2 4	5300	6	20	16	0
AB41 8	1900	55	31	23	0	DD2 5	3200	19	31	24	0
AB41 9	3500	21	17	14	0	DD3 0	2800	10	54	43	1
AB42 0	1500	30	20	16	0	DD4 0	3300	9	26	20	0
, LD-72 U	- 1000					254 0		 			

_	Dwellings		Results, Bq m ⁻³				Dwellings		Results, Bo		
Postcode		<i>y</i> -			At or above	Postcode		, , , , , , , , , , , , , , , , , , , 			At or above
sector	Total	Measured	average	average	Action Level	sector	Total	Measured	average	average	Action Level
DD5 3	4800	21	21	16	0	EH10 7	1800	. 5	37	24	0
DD5 4	3700	. 5	22	20	0	EH12 8	5200	. 5	10	9	0
DD6 8	2400	13	35	27	0	EH13 9	3600	. 5	13	11	0
DD6 9	1900	6	29	27	0	EH14 5	3700	. 7	16	13	0
DD7 6	2200	8	17	16	0	EH14 7	2000	9	19	15	0
DD7 7	3000	10	27	22	0	EH16 6	5300	6	15	12	0
DD8 1	3700	35	25	22	0	EH21 7	3100	. 7	12	10	0
DD8 2	3300	33	26	22	0	EH22 2	2700	. 7	44	18	1_
DD8 3	2700	36	27	21	0	EH22 5	2700	6	19	18	0
DD8 4	2100	41	29	22	0	EH23 4	3200	32	29	20	0
DD8 5	1700	29	39	30	0	EH26 8	2800	13	30	21	0
DD9 6	2600	23	25	20	0	EH26 9	1800	11	28	19	0
DD9 7	2800	67	38	26	1_	EH27 8	1100	15	26	16	0
DG1 1	2600	17	30	26	0	EH30 9	4100	13	13	11	0
DG1 3	3000	24	27	22	0	EH31 2	1300	8	20	17	0
DG1 4	4900	51	22	19	0	EH32 0	4300	20	25	20	0
DG10 9	2000	54	44	28	2	EH33 1	2400	6	19	17	0
DG11 1	2000	53	36	25	0	EH34 5	1000	11	24	21	0
DG11 2	2500	47	49	28	1_	EH35 5	960	6	23	17	0
DG11 3	1400	41	27	19	0	EH36 5	180	. 7	16	14	0
DG12 5	2800	19	15	14	0	EH37 5	720	11	16	14	0
DG12 6	3100	14	17	16	0	EH38 5	170	19	46	35	0
DG13 0	1500	80	56	41	1_	EH39 4	3000	22	25	20	0
DG14 0	610	41	20	17	0	EH39 5	1300	15	33	26	0
DG16 5	1800	9	18	15	0	EH4 5	2000	6	24	17	0
DG2 0	3400	40	40	30	0	EH4 6	2600	. 8	22	15	0
DG2 8	1700	. 77	35	27	0	EH40 3	980	9	43	35	0
DG2 9	3400	17	29	23	0	EH41 3	2500	. 7	26	20	0
DG3 4	1000	63	32	22	0	EH41 4	2900	39	36	24	1_
DG3 5	1200	34	40	26	1_	EH42 1	4600	39	32	23	1_
DG4 6	2100	35	33	22	0	EH43 6	460	9	36	27	0
DG5 4	2800	46	45	35	1_	EH44 6	1600	28	45	37	0
DG6 4	2600	62	37	29	1_	EH45 8	2800	44	52	35	2
DG7 1	2700	54	34	27	0	EH45 9	2100	17	26	23	0
DG7 2	1300	60	37	29	0	EH46 7	1300	52	37	26	0
DG7 3	2100	140	29	21	1_	EH47 7	3100	6	10	9	0
DG8 0	950	81	30	21	1_	EH47 8	3600	5	15	14	0
DG8 6	2200	67	30	24	0	EH47 9	2200	. 7	8	7	0
DG8 7	610	41	39	28	0	EH48 2	5500	. 7	9	9	0
DG8 8	1200	55	30	25	0	EH48 3	3700	. 8	20	15	0
DG8 9	1500	57	46	28	2	EH48 4	2400	10	11	8	0
DG9 0	1800	40	27	18	0	EH49 6	3500	13	17	14	0
DG9 7	3200	9	16	11	0	EH49 7	3700	10	19	12	0
DG9 8	1900	36	21	16	0	EH51 0	3000	6	13	9	0
DG9 9	1200	57	20	15	0	EH51 9	4000	6	26	14	0
	3300	6	27	21	0	EH52 6	4600	14	16	14	0

	Dwellin	gs	Results, Bo	Results, Bq m ⁻³			Dwellin	igs	Results, B		
Postcode		•			At or above	Postcode		-	Arithmetic		At or above
sector	Total	Measured	average	average	Action Level	sector	Total	Measured	average	average	Action Level
EH54 6	8600	12	9	. 8	0	G64 2	2400	7	13	12	0
EH54 8	6300	. 5	11	10	0	G65 9	3400	. 5	10	9	0
EH54 9	2700	. 7	15	13	0	G66 3	3100	6	9	. 8	0
EH55 8	3700	28	10	9	0	G66 5	1700	. 5	10	9	0
FK1 2	3300	. 7	11	9	0	G66 8	1600	8	16	14	0
FK1 3	830	10	9	8	0	G67 1	2600	6	15	14	0
FK10 2	6700	10	15	10	0	G67 2	5500	6	16	12	0
FK10 3	3800	. 5	15	13	0	G67 3	3900	. 5	8	. 7	0
FK10 4	3200	13	23	17	0	G69 6	3900	. 5	14	13	0
FK13 6	3000	6	17	11	0	G69 7	4200	. 5	8	8	0
FK14 7	1900	25	54	38	0	G72 8	5300	. 5	8	. 7	0_
FK15 0	1900	20	25	21	0	G73 3	3700	. 5	19	15	0
FK15 9	2400	26	33	25	0	G73 4	3300	6	14	12	0
FK16 6	850	. 8	18	17	0	G74 2	3500	5	11	9	0
FK17 8	1700	32	23	17	0	G74 3	6500	6	19	10	0
FK18 8	120	9	14	12	0	G74 4	4600	5	9	. 8	0
FK19 8	320	25	29	20	0	G75 0	4200	. 5	23	15	0
FK2 0	6400	. 8	27	18	0	G75 9	4100	6	50	34	0
FK2 8	3600	. 8	19	18	0	G76 0	2000	10	19	16	0
FK2 9	4800	. 8	16	11	0	G76 7	3100	6	14	12	0
FK20 8	180	28	41	23	1_	G76 8	3300	5	11	10	0
FK21 8	560	48	28	23	0	G77 5	4400	8	21	16	0
FK4 1	4000	6	25	21	0	G77 6	4700	12	25	17	0
FK4 2	1500	8	9	9	0	G78 1	3900	8	29	23	0
FK5 4	5600	5	12	9	0	G78 3	2300	12	18	17	0
FK6 5	3400	13	9	7	0	G78 4	270	8	16	14	0
FK7 7	4800	6	9	7	0	G82 4	2300	6	23	19	0
FK7 8	2500	6	18	16	0	G82 5	2500	11	15	12	0
FK7 9	3000	10	26	22	0	G83 0	3600	6	24	18	0
FK8 3	2600	110	20	16	0	G83 7	420	30	20	17	0
FK9 4	2600	13	27	23	0	G83 8	3500	37	28	19	0
FK9 5	2600	5	18	17	0	G83 9	4000	10	12	11	0
G21 1	4400	10	19	16	0	G84 0	2000	23	21	14	0
G23 5	3200	5	15	12	0	G84 7	2600	7	13	13	0
G33 6	2700	5	8	7	0	G84 8	2500	14	18	15	0
G41 2	3400	6	7	7	0	G84 9	1900	8	14	12	0
G42 8	5400	6	8	7	0	HS1 2	2800	7	12	9	0
G52 1	3800	6	15	13	0	HS2 0	4400	120	11	8	0
G52 2	4800	6	13	13	0	HS2 9	2300	180	15	8	1
G60 5	2300	6	22	20	0	HS3 3	730	100	11	8	0
G61 4	3200	6	10	9	0	HS4 3	160	6	6	3	0
G62 6	1700	5	17	15	0	HS5 3	160	13	12	10	0
G62 7	2800	7	10	10	0	HS6 5	960	99	9	6	0
G62 8	1200	5	19	15	0	HS7 5	600	31	11	8	0
G63 0	2200	63	16	13	0	HS8 5	930	78	7	6	0
G63 9	1800	21	15	13	0	HS9 5	600	41	7	5	0
	-		-	•			•		-	•	

			Results, B	Results, Bq m ⁻³			Dwellings			Results, Bq m ⁻³		
Postcode			Arithmetic	Geometric	At or above	Postcode			Arithmetic	Geometric	At or above	
sector	Total	Measured		average	Action Level	sector	Total	Measured		average	Action Level	
IV1 3	670	7	. 69	38	1	IV5 7	500	9	43	33	0	
IV10 8	1100	10	32	25	0	IV51 9	2400	130	13	9	0	
IV11 8	450	16	34	27	0	IV52 8	200	9	20	12	0	
IV12 4	2400	9	20	18	0	IV53 8	78	10	24	15	0	
IV12 5	3200	79	31	23	0	IV54 8	710	78	26	16	0	
IV13 7	270	50	27	22	0	IV55 8	730	71	10	8	0	
IV14 9	890	27	47	35	0	IV56 8	150	23	15	11	0	
IV15 9	2600	20	26	20	0	IV6 7	1800	37	28	22	0	
IV16 9	750	12	19	16	0	IV63 6	930	50	76	46	5_	
IV17 0	2700	40	29	24	0	IV63 7	170	30	76	58	2	
IV18 0	2700	32	23	21	0	IV7 8	2400	37	39	20	1_	
IV19 1	2200	42	34	24	0	IV8 8	360	. 6	33	29	0	
IV2 4	5700	. 7	35	27	0	IV9 8	570	14	39	33	0	
IV2 5	3400	27	18	15	0	KA1 3	3600	. 6	17	15	0	
IV2 6	2000	110	28	18	1_	KA1 4	3200	12	8	8	0	
IV2 7	4400	30	27	20	0	KA1 5	2800	13	15	15	0	
IV20 1	1400	47	19	16	0	KA10 6	5200	8	10	8	0	
IV21 2	600	52	14	10	0	KA11 1	4800	10	29	19	0	
IV22 2	800	110	15	11	0	KA11 2	1500	6	10	10	0	
IV23 2	410	79	27	19	0	KA12 0	4100	6	9	10	0	
IV24 3	760	. 54	30	23	0	KA13 6	4900	. 8	17	12	0	
IV25 3	1200	45	45	27	2	KA13 7	2700	. 5	11	10	0	
IV26 2	980	50	19	12	0	KA15 1	1700	10	15	12	0	
IV27 4	2400	260	20	12	1_	KA15 2	1500	. 7	15	11	0	
IV28 3	290	31	27	19	0	KA16 9	1600	8	19	16	0	
IV3 8	5500	32	160	43	2	KA17 0	1800	14	16	13	0	
IV30 1	2800	. 5	11	11	0	KA18 1	3200	13	14	11	0	
IV30 5	2100	25	17	14	0	KA18 2	2400	16	11	10	0	
IV30 6	3800	. 5	12	9	0	KA18 3	2500	27	17	12	0	
IV30 8	2300	51	21	16	0	KA18 4	1700	21	19	14	0	
IV31 6	3300	15	17	14	0	KA19 7	2100	44	23	19	0	
IV32 7	2200	33	25	18	0	KA19 8	1400	16	21	14	0	
IV36 1	3600	14	16	14	0	KA2 0	1800	9	13	10	0	
IV36 2	2200	59	20	15	0	KA21 6	2500	5	13	11	0	
IV36 3	1300	9	15	14	0	KA23 9	2300	17	9	8	0	
IV4 7	1900	100	36	28	0	KA24 4	1700	. 7	14	12	0	
IV40 8	1300	110	20	14	1_	KA24 5	1200	11	24	16	0	
IV41 8	170	. 8	37	31	0	KA25 7	1400	. 8	15	10	0	
IV42 8	240	11	22	15	0	KA26 0	2900	97	21	14	1_	
IV43 8	140	16	14	11	0	KA26 9	2600	51	20	14	0	
IV44 8	150	14	15	10	0	KA27 8	2700	120	23	16	0	
IV45 8	120	13	11	8	0	KA28 0	1300	10	5	5	0	
IV46 8	52	11	21	16	0	KA29 0	750	11	13	13	0	
IV47 8	300	33	11	8	0	KA3 2	4000	10	7	7	0	
IV48 8	44	5	11	6	0	KA3 4	580	13	15	13	0	
IV49 9	560	45	27	15	1	KA3 5	1900	10	17	13	0	

				Results, Bq m ⁻³			Dwellings			Results, Bq m ⁻³			
Postcode					At or above	Postcode	.		Arithmetic		At or above		
sector	Total	Measured		average	Action Level	sector	Total	Measured		average	Action Level		
KA3 6	1600	18	20	12	. 0	KY14 7	1800	23	21	17	0		
KA3 7	3500	6	19	17	0	KY15 4	3000	24	33	26	0		
KA30 8	3100	17	17	14	0	KY15 5	3900	21	18	15	0		
KA4 8	2500	15	12	9	0	KY15 7	3100	25	20	18	0		
KA5 5	1900	18	12	10	0	KY16 0	2300	17	18	16	0		
KA5 6	2500	14	22	17	0	KY16 8	4800	31	22	16	0		
KA6 5	1800	6	8	5	0	KY16 9	2800	5	10	6	0		
KA6 6	2500	14	11	9	0	KY2 5	5500	5	26	24	0		
KA6 7	4300	42	10	8	0	KY2 6	8300	8	17	15	0		
KA7 3	5100	13	9	7	0	KY3 0	2200	10	20	17	0		
KA7 4	3800	12	12	11	0	KY3 9	3000	6	23	14	. 0		
KA8 9	3900	6	10	. 10	. 0	KY4 0	3200	11	15	11	0		
KA9 1	3600	11	12	10	0	KY4 9	3700	6	10	9	0		
KW1 4	2600	84	22	16	0	KY5 0	3300	7	14	13	0		
KW1 5	2700	62	36	24	1_	KY5 8	2600	6	14	14	0		
KW10 6	790	17	28	23	0	KY6 2	4100	14	14	11	0		
KW11 6	71	25	35	25	0	KY6 3	2600	. 5	22	17	0		
KW12 6	770	46	51	28	2	KY7 5	2100	5	17	15	0		
KW13 6	52	26	17	12	0	KY7 6	5900	9	21	17	0		
KW14 7	3600	130	33	20	2	KY8 4	3400	6	15	13	0		
KW14 8	2600	51	46	26	2	KY8 5	4400	15	35	20	1		
KW15 1	3900	27	. 81	31	2	KY8 6	1400	. 9	25	22	0		
KW16 3	2000	110	83	22	4	KY9 1	1500	. 12	12	11	0		
KW17 2	4100	380	53	23	20	ML1 3	6400	. 5	8	6	0		
KW2 6	41	9	38	20	0	ML1 5	4500	5	12	11	0		
KW3 6	470	170	60	45	3	ML10 6	4500	44	21	17	0		
KW5 6	150	61	74	46	5	ML11 0	3900	38	31	19	0		
KW6 6	200	67	53	37	2	ML11 7	3400	. 7	17	13	0		
KW7 6	64	18	81	53	1_	ML11 8	3700	58	22	16	0		
KW8 6	480	340	150	90	57	ML11 9	4600	26	19	17	0		
KW9 6	970	280	25	20	0	ML12 6	3900	170	44	28	5		
KY1 2	4200	9	19	16	0	ML2 8	5700	6	10	7	0		
KY1 4	2500	6	7	6	0	ML2 9	2700	5	36	30	0		
KY10 2	1900	17	15	14	. 0	ML3 0	3500	. 5	11	10	0		
KY10 3	3100	20	20	19	0	ML3 6	3400	. 5	14	14	0		
KY11 2	5800	9	15	13	0	ML3 7	5500	. 8	9	7	0		
KY11 3	1500	8	28	24	0	ML5 1	3300	5	12	11	0		
KY11 4	6000	5	17	14	0	ML5 2	3900	5	7	5	0		
KY11 9	4200	25	21	19	0	ML5 4	5400	6	10	10	0		
KY12 0	5300	. 8	18	16	0	ML6 7	4200	15	7	5	0		
KY12 8	5000	16	17	13	. 0	ML6 8	6000	. 7	9	. 7	. 0		
KY12 9	5100	15	14	11	0	ML7 4	2900	7	13	8	0		
KY13 0	890	33	44	27	1	ML7 5	4000	6	18	10	0		
KY13 8	2200	7	30	29	0	ML8 4	3400	10	9	8	0		
KY13 9	1500	17	41	30	0	ML8 5	5000	9	13	12	0		
KY14 6	1300	19	43	35	0	ML9 1	3300	8	14	9	0		

Postcode		Dwellings					Dwellings		Results, B		
				Geometric	At or above	Postcode			Arithmetic	Geometric	At or above
sector Tot		Measured		average	Action Level	sector	Total	Measured		average	Action Level
	500	12	22	15	0	PA64 6	57	9	11	10	0
-	500	11	17	12	0	PA65 6	100	13	85	16	1_
-	000	13	23	18	0	PA66 6	93	19	7	5	0
	600	8	13	12	0	PA67 6	170	15	9	7	0
	100	18	13	11	0	PA69 6	21	. 7	9	. 5	0
	100	9	10	8	0	PA7 5	2100	6	12	10	0
	950	7	8	6	0	PA70 6	57	9	11	7	0
	200	5	9	8	0	PA71 6	25	9	43	17	0
	800	16	14	11	0	PA72 6	210	23	7	. 5	0
-	400	33	11	8	0	PA73 6	42	. 12	6	4	0
	550	32	14	10	0	PA74 6	22	9	8	5	0
•	180	36	17	14	0	PA75 6	700	37	10	7	0
-	800	20	21	16	0	PA76 6	90	9	6	3	0
-	700	48	17	13	0	PA77 6	440	35	10	5	0
	300	26	16	14	0	PA78 6	120	21	7	4	0
	45	5	19	17	0	PA8 7	3600	5	11	10	0
-	81	11	16	13	0	PH1 1	3900	8	26	24	0
PA27 8 4	410	27	22	17	0	PH1 2	5800	14	24	15	0
PA28 6 39	900	120	24	16	0	PH1 3	4400	41	23	16	0
PA29 6 12	200	85	21	13	0	PH1 4	2100	38	28	21	0
PA3 3 44	400	8	11	11	0	PH10 6	3100	22	35	30	0
PA30 8 7	710	23	44	29	0	PH10 7	2000	58	42	28	1
PA31 8 26	600	130	27	17	3_	PH11 8	1700	46	25	21	0
PA32 8 6	670	38	26	14	0	PH12 8	920	15	19	16	0
PA33 1 3	360	32	15	13	0	PH13 9	1800	27	29	23	0
PA34 4 35	500	97	38	21	4	PH14 9	690	14	28	22	0
PA34 5 19	900	64	17	12	0	PH15 2	1800	91	34	27	0
PA35 1 6	640	53	29	18	1_	PH16 5	2100	66	42	32	1_
PA36 4	32	10	14	12	0	PH17 2	140	26	25	19	0
PA37 1 12	200	41	43	21	1_	PH18 5	410	32	46	33	0
PA38 4 4	470	40	24	19	0	PH19 1	56	17	29	23	0
PA41 7	94	10	24	19	0	PH2 0	3700	19	20	17	0
PA42 7 5	590	28	17	10	0	PH2 6	3200	23	27	23	0
PA43 7 4	440	10	9	6	0	PH2 7	3600	28	22	18	0
PA44 7 1	160	24	33	13	1	PH2 9	2700	37	37	27	0
PA45 7	68	7	30	26	0	PH20 1	810	38	38	26	0
PA46 7 1	120	10	22	20	0	PH21 1	1100	47	48	36	1_
PA47 7 1	120	7	10	9	0	PH22 1	1900	22	71	43	2
PA48 7 1	180	13	8	5	0	PH23 3	360	15	100	61	1_
PA49 7 1	110	6	5	. 4	0_	PH24 3	440	17	53	43	0
PA5 0 31	100	5	12	9	0	PH25 3	520	31	60	45	1
PA5 9 33	300	7	8	7	0	PH26 3	1800	57	36	20	2
PA6 7 26	600	9	20	18	0	PH3 1	2700	36	37	23	1_
PA60 7 1	150	29	12	9	0	PH31 4	250	22	41	26	1_
PA61 7 1	140	16	21	14	0	PH32 4	380	19	95	58	3
PA62 6	25	6	13	10	0	PH33 6	3000	. 39	42	24	1

	Dwellings Results, Bq m ⁻³			Dwelling			ellings Results, Bq m ⁻³			_	
Postcode			Arithmetic	Geometric		Postcode	•		Arithmetic	Geometric	At or above
sector	Total	Measured	average	average	Action Level	sector	Total	Measured	average	average	Action Level
PH33 7	2300	60	28	20	0	TD10 6	530	25	22	18	0
PH34 4	490	51	74	31	6	TD11 3	3500	110	32	25	0
PH35 4	190	29	29	23	0	TD12 4	1500	30	43	25	1
PH36 4	790	79	14	9	0	TD13 5	440	24	24	18	0
PH37 4	82	18	17	14	0	TD14 5	3300	39	33	20	1
PH38 4	110	30	18	14	0	TD15 1	630	26	43	32	0
PH39 4	190	17	21	15	0	TD2 6	1100	32	39	26	1
PH4 1	370	9	40	29	0	TD3 6	440	25	19	16	0
PH40 4	120	10	7	6	0	TD4 6	1000	10	24	18	0
PH41 2	14	6	6	6	0	TD5 7	3500	33	20	16	0
PH41 4	430	28	19	16	0	TD5 8	2100	77	54	40	2
PH42 4	47	. 8	17	13	0	TD6 0	1700	14	22	20	0
PH43 4	14	6	13	. 7	0	TD6 9	2100	31	36	29	0
PH49 4	550	24	19	15	0	TD7 4	2200	23	33	27	0
PH5 2	400	9	24	21	0	TD7 5	1400	91	38	30	0
PH50 4	530	6	37	31	0	TD8 6	3000	68	35	21	1
PH6 2	1300	36	28	22	0	TD9 0	2400	76	31	25	0
PH7 3	2700	17	19	16	0	TD9 7	1900	38	43	34	1
PH7 4	1400	16	27	23	0	TD9 8	2600	37	28	23	0
PH8 0	1100	48	36	29	0	TD9 9	2500	25	30	24	0
PH9 0	500	23	35	26	0	ZE1 0	3900	23	39	19	1
TD1 1	2800	8	15	13	0	ZE2 9	6200	500	34	14	17
TD1 2	3000	44	22	18	0	ZE3 9	220	18	16	9	0
TD1 3	2700	25	50	35	1						

Table C6. Predictive data by local authority

		Dwellings in each probability banding*								Expected numbers above Action Level	
Code	Local authority	Total	Less than 1%		3%-4.9%	5%-9.9%	10%-29.9%	More than 30%	In Affected Areas	In whole Authority	
QA	Aberdeen City	104000	100000	3700	0	0	0	0	30-50	40–290	
QB	Aberdeenshire	106000	96800	5200	460	1000	2600	46	390–620	390-790	
QC	Angus	52800	52800	29	0	0	0	0	<10	0–100	
QD	Argyll and Bute	43300	42900	270	51	0	0	0	<10	0-40	
QE	Scottish Borders	55100	47900	6700	460	0	2	0	80–140	80-310	
QF	Clackmannanshire	23400	23300	130	0	0	0	0	<10	0-20	
QG	West Dunbartonshire	42400	42400	0	0	. 0	0	0	<10	<10	
QH	Dumfries and Galloway	71500	59900	11300	160	40	0	0	100–160	120-300	
QJ	Dundee City	73000	73000	0	0	0	0	0	<10	0-110	
QK	East Ayrshire	54800	54800	0	0	0	0	0	<10	<10	
QL	East Dunbartonshire	43900	43900	0	0	0	0	0	<10	<10	
QM	East Lothian	43500	43500	15	0	0	0	0	<10	0-80	
QN	East Renfrewshire	36400	36400	0	0	0	0	0	<10	<10	
QP	Edinburgh, City of	232000	232000	0	0	0	0	0	<10	0-20	
QQ	Falkirk	70200	70200	0	0	0	0	0	<10	<10	
QR	Fife	169000	168000	230	0	0	0	0	<10	0-120	
QS	Glasgow City	297000	297000	0	0	0	0	0	<10	0-40	
QT	Highland	108000	86700	18300	1700	470	530	38	320-480	320-730	
QU	Inverclyde	37600	37600	0	0	0	0	0	<10	0-20	
QW	Midlothian	34900	34900	0	0	0	0	0	<10	0-20	
QX	Moray	41400	39800	1500	41	3	0	0	10–30	10-60	
QY	North Ayrshire	65200	65200	0	0	0	0	0	<10	0-20	
QZ	North Lanarkshire	147000	147000	0	0	. 0	0	0	<10	<10	
RA	Orkney Islands	9900	6400	1300	1500	620	0	0	90-120	90-150	
RB	Perth and Kinross	67100	64700	2500	5	1	0	0	20–40	20-250	
RC	Renfrewshire	82200	82200	0	0	0	0	0	<10	<10	
RD	Shetland Islands	10300	10100	56	150	0	0	0	<10	0-20	
RE	South Ayrshire	53600	53600	0	0	. 0	0	0	<10	<10	
RF	South Lanarkshire	140000	139000	420	120	0	0	0	0-20	0-50	
RG	Stirling	38700	38700	33	0	. 0	0	0	<10	0-40	
RH	West Lothian	73800	73800	0	0	0	0	0	<10	<10	
RJ	Eilean Siar	13600	13600	0	0	0	0	0	<10	<10	
	Totals (rounded)	2440000	2380000	51700	4600	2100	3100	84			

^{*} A total of 103 postal addresses are in unmapped 5-km squares (see text): these are in Argyll and Bute (1); Highland (94); Perth and Kinross (3); Eilean Siar (5).